Revisiting the Pathophysiology of Acute Respiratory Distress Syndrome in Burn with Inhalation Injury: A Comprehensive Review
Main Article Content
Abstract
Acute respiratory distress syndrome (ARDS) is a common complication in severe burn patients, arising from inflammatory responses following burns or inhalation injuries. This literature review explores the mechanisms and diagnostic approaches for ARDS in burn patients. Methods involved searching open-access journals using specific keywords on PubMed, Google Scholar, and Elsevier. The review highlights the involvement of various immune cells and cytokines in ARDS pathophysiology, with diagnostic tools including clinical signs, imaging, and bronchoscopy. Therapeutic strategies focus on ventilation and pharmacological interventions targeting inflammation. Further research is needed to better understand ARDS in burn patients, particularly regarding inflammatory markers and pharmacological treatments.
Article Details
This work is licensed under a Creative Commons Attribution 4.0 International License.
References
I. Wang Y, Zhang L, Xi X, Zhou JX. China Critical Care Sepsis Trial (CCCST) Workgroup. The association between etiologies and mortality in acute respiratory distress syndrome: A multicenter observational cohort study. Front Med (Lausanne). 2021;8:739596.
II. Lam NN, Hung TD. ARDS among cutaneous burn patients combined with inhalation injury: early onset and bad outcome. Ann Burns Fire Disasters. 2019;32(1):37-42.
III. Silva L, Garcia L, Oliveira B. Acute respiratory distress syndrome in burn patients: incidence and risk factor analysis. Ann Burns Fire Disasters. 2016;29(3):178-182.
IV. Cartotto R, Li Z, Hanna S, Spano S. The acute respiratory distress syndrome (ARDS) in mechanically ventilated burn patients: an analysis of risk factors, clinical features, and outcomes using the Berlin ARDS definition. Burns. 2016;42(7):1423–1443.
V. Shpichka A, Butnaru D, Bezrukov EA, Sukhanov RB, Atala A, Burdukovskii V, Zhang Y, Timashev P. Skin tissue regeneration for burn injury. Stem Cell Res. Ther. 2019;10:94. doi: 10.1186/s13287-019-1203-3.
VI. Ja GE, Eh OV, García-Manzano R, Barker AA, Aron J, García-Espinoza J. Burns: Definition, classification, pathophysiology and initial approach. Int. J. Gen. Med. 2020;5:2327–5146. doi: 10.4172/2327-5146.1000298.
VII. Jeschke MG, van Baar ME, Choudhry, MA. Burn injury. Nat Rev Dis Primers. 2020;6:11. https://doi.org/10.1038/s41572-020-0145-5
VIII. Żwierełło W, Piorun K, Skórka-Majewicz M, Maruszewska A, Antoniewski J, Gutowska I. Burns: classification, pathophysiology, and treatment: A review. Int J Mol Sci. 2023;24(4):3749. doi:10.3390/ijms24043749
IX. Bittner EA, Shank E, Woodson L, Martyn JA. Acute and perioperative care of the burn-injured patient. Anesthesiology. 2015;122:448–64.
X. Nielson CB, Duethman NC, Howard JM, Moncure M, Wood JG. Burns: Pathophysiology of systemic complications and current management. J Burn Care Res. 2017;38(1):e469-e481.
doi:10.1097/BCR.0000000000000355.
XI. Dries DJ, Endorf FW. Inhalation injury: epidemiology, pathology, treatment strategies. Scand J Trauma Resusc Emerg Med. 2013;21(31):21-31. https://doi.org/10.1186/1757-7241-21-31
XII. Jones SW, Williams FN, Cairns BA, Cartotto R. Inhalation injury: Pathophysiology, diagnosis, and treatment. Clin Plast Surg. 2017;44(3):505-511. doi:10.1016/j.cps.2017.02.009.
XIII. Johansson MJ. Gas Exchange in the Normal lung. Experimental studies on the effects of positive end-expiratory pressure and body position. 2014. Linköping University Medical Dissertations No. 1425.
XIV. Powers KA, Dhamoon AS. Physiology, pulmonary ventilation and perfusion. [Updated 2023 Jan 23]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2023 Jan-. Available from: https://www.ncbi.nlm.nih.gov/books/NBK539907/.
XV. Emilie DS, Ulla V, Karin SH, Jesus PG, Yi YZ, Jorid BS. An adverse outcome pathway for lung surfactant function inhibition leading to decreased lung function. Current Research in Toxicology. 2021;2:225-236.
XVI. Silva L, Garcia L, Oliveira B, et al. Acute respiratory distress syndrome in burn patients: incidence and risk factor analysis. Ann Burns Fire Disasters. 2016;29(3):178-182.
XVII. Jeschke MG, van Baar ME, Choudhry MA, Chung KK, Gibran NS, Logsetty S. Burn injury. Nature Reviews Disease Primers. 2020;6(1):1-25.
XVIII. Krzyzaniak M, Cheadle G, Peterson C, et al. Burn-induced acute lung injury requires a functional Toll-like receptor 4. Shock. 2011;36(1):24-29. doi:10.1097/SHK.0b013e318212276b
XIX. Foncerrada G, Culnan DM, Capek KD, et al. Inhalation Injury in the Burned Patient. Ann Plast Surg. 2018;80(3 Suppl 2):S98-S105. doi:10.1097/SAP.0000000000001377
XX. Sierawska O, Małkowska P, Taskin C, et al. Innate immune system response to burn damage-focus on cytokine alteration. Int J Mol Sci. 2022;23(2):716. doi:10.3390/ijms23020716.
XXI. Strudwick XL, Cowin AJ. The role of the inflammatory response in burn injury [Internet]. Hot Topics in Burn Injuries. InTech; 2018. Available from: http://dx.doi.org/10.5772/intechopen.71330
XXII. Burgess M, Valdera F, Varon D, Kankuri E, Nuutila K. The immune and regenerative response to burn injury. Cells. 2022; 11(19):3073. https://doi.org/10.3390/cells11193073
XXIII. González-López A, Albaiceta GM. Repair after acute lung injury: molecular mechanisms and therapeutic opportunities. Crit Care. 2012;16(9). https://doi.org/10.1186/cc11224
XXIV. Lam NN, Hung TD. ARDS among cutaneous burn patients combined with inhalation injury: early onset and bad outcome. Ann Burns Fire Disasters. 2019;32: 37–42.
XXV. Dries DJ, Marini JJ. Management of critical burn injuries: Recent developments. Acute Crit Care. 2017;32(1):9-21. doi: 10.4266/kjccm.2016.00969
XXVI. Huang S, Wang YC, Ju S. Advances in medical imaging to evaluate acute respiratory distress syndrome. Chin J Acad Radiol. 2022;5(1):1-9. doi:10.1007/s42058-021-00078-y.
XXVII. Bittner E, Sheridan R. Acute respiratory distress syndrome, mechanical ventilation, and inhalation injury in Burn Patients. Surg Clin North Am. 2023;103(3):439-451. doi: 10.1016/j.suc.2023.01.006.
XXVIII. Baddela VS, Sharma A, Michaelis M, Vanselow J. HIF1 driven transcriptional activity regulates steroidogenesis and proliferation of bovine granulosa cells. Scientific Reports. 2020;10(1):3906.
XXIX. Araz O. Current pharmacological approach to ARDS: The place of Bosentan. Eurasian J Med. 2020;52(1):81-85.
doi: 10.5152/eurasianjmed.2020.19218.
XXX. Han S, Mallampalli RK. The acute respiratory distress syndrome: from mechanism to translation. J Immunol. 2015;194(3):855-60.
doi: 10.4049/jimmunol.1402513.