Ethics and Regulation for Artificial Intelligence in Healthcare: Empowering Clinicians to Ensure Equitable and High-Quality Care
Main Article Content
Abstract
As artificial intelligence (AI) technology becomes increasingly integrated into healthcare, it is crucial for clinicians to possess a comprehensive understanding of its capabilities, limitations, and ethical implications. This literature review explores the reasons why clinicians need to be better informed about artificial intelligence, emphasizes the potential benefits of artificial intelligence in healthcare, raises awareness regarding the risks and unintended consequences associated with its use, discusses the development of machine learning and artificial intelligence in healthcare, and underscores the need for ethical guidelines and regulation to harness the potential of artificial intelligence in a responsible manner.
Article Details
This work is licensed under a Creative Commons Attribution 4.0 International License.
References
I. Hamet P, Tremblay J. Artificial Intelligence in medicine. Metabolism. 2017;69.
doi:10.1016/j.metabol.2017.01.011
II. Esmaeilzadeh P. Use of AI-based tools for healthcare purposes: A survey study from consumers’ perspectives. BMC Medical Informatics and Decision Making. 2020;20(1). doi:10.1186/s12911-020-01191-1
III. Jiang F, Jiang Y, Zhi H, Dong Y, Li H, Ma S, Wang Y, Dong Q, Shen H, Wang Y. Artificial intelligence in healthcare: past, present and future. Stroke Vasc Neurol. 2017 Jun 21;2(4):230-243.
doi: 10.1136/svn-2017-000101. PMID: 29507784; PMCID: PMC5829945.
IV. Abdullah YI, Schuman JS, Shabsigh R, Caplan A, Al-Aswad LA. Ethics of Artificial Intelligence in medicine and ophthalmology. Asia-Pacific Journal of Ophthalmology. 2021;10(3):289–98.
doi:10.1097/apo.0000000000000397.
V. Ali O, Abdelbaki W, Shrestha A, Elbasi E, Alryalat MA, Dwivedi YK. A systematic literature review of Artificial Intelligence in the healthcare sector: Benefits, challenges, methodologies, and functionalities. Journal of Innovation & Knowledge. 2023;8(1):100333.
doi:10.1016/j.jik.2023.100333
VI. Giordano C, Brennan M, Mohamed B, Rashidi P, Modave F, Tighe P. Accessing artificial intelligence for clinical decision-making. Frontiers in Digital Health. 2021;3. doi:10.3389/fdgth.2021.645232 7. Mei L, Zhang H, Chen Y, Niu X. Clinical features of congenital complete vaginal atresia combined with cervical aplasia: A retrospective study of 19 patients and literature review. Congenit Anom (Kyoto). 2021 Jul;61(4):127-132.
DOI: 10.1111/cga.12417.
VII. Rong G, Mendez A, Bou Assi E, Zhao B, Sawan M. Artificial Intelligence in Healthcare: Review and Prediction case studies. Engineering.
;6(3):291–301. doi:10.1016/j.eng.2019.08.015.
VIII. Shaheen MY. Applications of artificial intelligence (AI) in Healthcare: A Review. 2021; doi:10.14293/s2199-1006.1.sor-.ppvry8k.v1
IX. khan ZF, Alotaibi SR. Applications of artificial intelligence and big data analytics in M-Health: A healthcare system perspective. Journal of Healthcare Engineering. 2020;2020:1–15.
doi:10.1155/2020/8894694
X. Ferdousi R, Hossain MA, El Saddik A. Early-stage risk prediction of Non-Communicable Disease Using Machine Learning in health CPS. IEEE Access. 2021;9:96823–37.
doi:10.1109/access.2021.3094063.
XI. Davenport T, Kalakota R. The potential for artificial intelligence in Healthcare. Future Healthcare Journal. 2019;6(2):94–8.
doi:10.7861/futurehosp.6-2-94.
XII. Chen M, Decary M. Artificial Intelligence in healthcare: An essential guide for health leaders. Healthcare Management Forum. 2019;33(1):10–8.
doi:10.1177/0840470419873123
XIII. Hague DC. Benefits, pitfalls, and potential bias in health care AI. North Carolina Medical Journal. 2019;80(4):219–23. doi:10.18043/ncm.80.4.219 Romanski PA, Bortoletto P, Pfeifer SM. Creation of a novel inflatable vaginal stent for McIndoe vaginoplasty. Fertil Steril. 2021 Mar;115(3):804-806. DOI: 10.1016/j.fertnstert.2020.09.030l
XIV. Challen R, Denny J, Pitt M, Gompels L, Edwards T, Tsaneva-Atanasova K. Artificial Intelligence, Bias and clinical safety. BMJ Quality & Safety. 2019;28(3):231–7. doi:10.1136/bmjqs-2018-008370
XV. Ennab M, Mcheick H. Designing an interpretability-based model to explain the artificial intelligence algorithms in Healthcare. Diagnostics.
;12(7):1557. doi:10.3390/diagnostics12071557
XVI. Murdoch B. Privacy and artificial intelligence: Challenges for protecting health information in a new era. BMC Medical Ethics. 2021;22(1). doi:10.1186/s12910-021-00687-3
XVII. Howard J. Artificial Intelligence: Implications for the future of work. American Journal of Industrial Medicine.2019;62(11):917–26. doi:10.1002/ajim.23037
XVIII. Scott IA, Carter SM, Coiera E. Exploring stakeholder attitudes towards AI in clinical practice. BMJ Health & Care Informatics. 2021;28(1). doi:10.1136/bmjhci-2021-100450
XIX. Turing, A. Computing machinery and intelligence. Mind, 1950, LIX(236), 433-460.
XX. Darcy AM, Louie AK, Roberts LW. Machine learning and the profession of medicine. JAMA. 2016;315(6):551. doi:10.1001/jama.2015.18421
XXI. Esteva A, Kuprel B, Novoa RA, Ko J, Swetter SM, Blau HM, et al. Dermatologist-level classification of skin cancer with Deep Neural Networks. Nature. 2017;542(7639):115–8. doi:10.1038/nature21056
XXII. Long E, Lin H, Liu Z, Wu X, Wang L, Jiang J, et al. An artificial intelligence platform for the multihospital collaborative management of Congenital Cataracts. Nature Biomedical Engineering. 2017;1(2). doi:10.1038/s41551-016-0024
XXIII. Natural language processing. SAGE Research Methods Foundations. 2020;
doi:10.4135/9781526421036879118
XXIV. Afzal N, Sohn S, Abram S, Scott CG, Chaudhry R, Liu H, et al. Mining peripheral arterial disease cases from narrative clinical notes using Natural Language Processing. Journal of Vascular Surgery. 2017;65(6):1753–61. doi:10.1016/j.jvs.2016.11.031
XXV. Miller TP, Li Y, Getz KD, Dudley J, Burrows E, Pennington J, et al. Using electronic medical record data to report laboratory adverse events. British Journal of Haematology. 2017;177(2):283–6. doi:10.1111/bjh.14538
XXVI. Castro VM, Dligach D, Finan S, Yu S, Can A, Abd-El-Barr M, et al. Large-scale identification of patients with cerebral aneurysms using natural language processing. Neurology. 2016;88(2):164–8. doi:10.1212/wnl.0000000000003490
XXVII. Habehh H, Gohel S. Machine Learning in Healthcare. Curr Genomics. 2021 Dec 16;22(4):291-300.
doi:10.2174/1389202922666210705124359. PMID: 35273459; PMCID: PMC8822225.
XXVIII. Ge Y, Wang Q, Wang L, Wu H, Peng C, Wang J, et al. Predicting post-stroke pneumonia using deep neural network approaches. International Journal of Medical Informatics. 2019;132:103986.
doi:10.1016/j.ijmedinf.2019.103986
XXIX. Ahmad FS, Ali L, Raza-Ul-Mustafa, Khattak HA, Chan Bukhari SA. A hybrid machine learning framework to predict early risk of mortality in paralytic ileus patients using electronic health records. 2019; doi:10.1101/19006254
XXX. Vamathevan J, Clark D, Czodrowski P, Dunham I, Ferran E, Lee G, Li B, Madabhushi A, Shah P, Spitzer M, Zhao S. Applications of machine learning in drug discovery and development. Nat Rev Drug Discov. 2019 Jun;18(6):463-477. doi: 10.1038/s41573-019-0024-5. PMID: 30976107; PMCID: PMC6552674.
XXXI. Paré G, Mao S, Deng WQ. A machine-learning heuristic to improve gene score prediction of polygenic traits. 2017; doi:10.1101/107409
XXXII. Jones OT, Matin RN, van der Schaar M, Prathivadi Bhayankaram K, Ranmuthu CKI, Islam MS, Behiyat D, Boscott R, Calanzani N, Emery J, Williams HC, Walter FM. Artificial intelligence and machine learning algorithms for early detection of skin cancer in community and primary care settings: a systematic review. Lancet Digit Health. 2022 Jun;4(6):e466-e476. doi: 10.1016/S2589-7500(22)00023-1. PMID: 35623799.
XXXIII. Tran KA, Kondrashova O, Bradley A, Williams ED, Pearson JV, Waddell N. Deep learning in cancer diagnosis, prognosis and treatment selection. Genome Med. 2021 Sep 27;13(1):152. doi: 10.1186/s13073-021-00968-x. PMID: 34579788; PMCID: PMC8477474.
XXXIV. Grewal JK, Tessier-Cloutier B, Jones M, Gakkhar S, Ma Y, Moore R, et al.
XXXV. Application of a neural network whole transcriptome–based pan-cancer method for diagnosis of primary and metastatic cancers. JAMA Netw Open. 2019;2(4):e192597.
https://doi.org/10.1001/jamanetworkopen.2019.2597.
XXXVI. Faturrahman Moh, Wasito I, Hanifah N, Mufidah R. Structural MRI classification for alzheimer’s disease detection using Deep Belief Network. 2017 11th International Conference on Information & Communication Technology and System (ICTS). 2017;
doi:10.1109/icts.2017.8265643
XXXVII. Jansson, R.W.; Hufthammer, K.O.; Krohn, J. Diabetic retinopathy in type 1 diabetes patients in Western Norway. Acta Ophthalmol., 2018, 96(5), 465-474.
XXXVIII. Shademan A, Decker RS, Opfermann JD, Leonard S, Krieger A, Kim PC. Supervised Autonomous Robotic Soft Tissue surgery. Science Translational Medicine. 2016;8(337).
doi:10.1126/scitranslmed.aad9398
XXXIX. Soguero-Ruiz C, Hindberg K, Mora-Jiménez I, Rojo-Álvarez JL, Skrøvseth SO, Godtliebsen F, et al. Predicting colorectal surgical complications using heterogeneous clinical data and kernel methods. Journal of Biomedical Informatics. 2016;61:87–96. doi:10.1016/j.jbi.2016.03.008
XL. BELLINI V, VALENTE M, GADDI AV, PELOSI P, BIGNAMI E. Artificial Intelligence and telemedicine in anesthesia: Potential and problems. Minerva Anestesiologica. 2022;88(9). doi:10.23736/s0375-9393.21.16241-8
XLI. Li J-PO, Liu H, Ting DSJ, Jeon S, Chan RVP, Kim JE, et al. Digital Technology, Tele-Medicine and Artificial Intelligence in Ophthalmology: A global perspective. Progress in Retinal and Eye Research. 2021;82:100900. doi:10.1016/j.preteyeres.2020.100900
XLII. Jobin, A., Ienca, M., & Vayena, E. (2019). The global landscape of AI ethics guidelines. Nature machine intelligence, 1(9), 389-399.
XLIII. Lehmann, L. S. (2021). Ethical challenges of integrating ai into healthcare. In Artificial Intelligence in Medicine (pp. 1-6). Cham: Springer International Publishing.
XLIV. Mittelstadt, B. (2019). Principles alone cannot guarantee ethical AI. Nature machine intelligence, 1(11), 501-507.
XLV. Kiseleva, A., Kotzinos, D., & De Hert, P. (2022). Transparency of AI in healthcare as a multilayered system of accountabilities: between legal requirements and technical limitations. Frontiers in Artificial Intelligence, 5, 879603.
XLVI. Bagave, P., Westberg, M., Dobbe, R., Janssen, M., & Ding, A. Y. (2022, December). Accountable AI for Healthcare IoT Systems. In 2022 IEEE 4th International Conference on Trust, Privacy and Security in Intelligent Systems, and Applications (TPS-ISA) (pp. 20-28). IEEE.
XLVII. Ahmad, M. A., Patel, A., Eckert, C., Kumar, V., & Teredesai, A. (2020, August). Fairness in machine learning for healthcare. In Proceedings of the 26th ACM SIGKDD international conference on knowledge discovery & data mining (pp. 3529-3530).
XLVIII. Bartoletti, I. (2019). AI in healthcare: Ethical and privacy challenges. In Artificial Intelligence in Medicine: 17th Conference on Artificial Intelligence in Medicine, AIME 2019, Poznan, Poland, June 26–29, 2019, Proceedings 17 (pp. 7-10). Springer International Publishing.
XLIX. Asan, O., Bayrak, A. E., & Choudhury, A. (2020). Artificial intelligence and human trust in healthcare: focus on clinicians. Journal of medical Internet research, 22(6), e15154.
L. Bates, D. W., Landman, A., Levine, D. M., McAfee, A., Nichols, B., Pawlson, G. T., & Blumenthal, D. (2020). Health care and artificial intelligence. National Academy of Medicine Perspectives, 1(1), p. 4.
LI. He, J., Baxter, S. L., Xu, J., Xu, J., Zhou, X., & Zhang, K. (2019). The practical implementation of artificial intelligence technologies in medicine. Nature medicine, 25(1), 30-36.
LII. Bates, D. W., Auerbach, A., Schulam, P., Wright, A., & Saria, S. (2020). Reporting and implementing interventions involving machine learning and artificial intelligence. Annals of internal medicine, 172(11_Supplement), S137-S144.
LIII. Yin, J., Ngiam, K. Y., & Teo, H. H. (2021). Role of artificial intelligence applications in real-life clinical practice: systematic review. Journal of medical Internet research, 23(4), e25759.
LIV. European Commission High-Level Expert Group on Artificial Intelligence. (2019). Ethics guidelines for trustworthy AI. Retrieved from https://ec.europa.eu/futurium/en/ai-alliance-consultation/guidelines
LV. L aranjo, L., Dunn, A. G., Tong, H. L., Kocaballi, A. B., Chen, J., Bashir, R., & Surian, D. (2018). Conversational agents in healthcare: A systematic review. Journal of the American Medical Informatics Association, 25(9), 1248-1258.
LVI. Nundy, S., Patel, K. K., & Baron, R. J. (2020). Harnessing artificial intelligence for patient-centered care. JAMA, 323(8), 707-708.