The Effectiveness of Snail (Achatina Fulica) Slime Cream toward Inhibiting the Formation of Sunburn Cells on Mice (Mus Musculus) Balb/C Skin (Experimental Study with Induced UVB Radiation)
Main Article Content
Abstract
Background ─ Sunburn is a radiation burn of the skin by exposure to UV light. UVB is the most dangerous UV light for humans and can cause skin cancer risk. UVB rays can damage DNA so that it can cause a response in the form of apoptosis of keratinocyte cells or also called sunburn cells.
Objective ─ Determined the effectiveness of snail (Achatina fulica) slime cream on inhibited the formation of sunburn cells on the skin of BALB/c mice (Mus musculus) induced by UVB radiation.
Metodhs ─ Experimental research using randomized post-test only control group design with 35 male BALB/c (Mus musculus) mice divided into 7 groups. There was a group without treatment, a negative control group, a control group with Parasol Face Sunscreen Cream, and 4 treatment groups with topical application of snail slime cream with varying doses. All groups except the untreated group were irradiated with UVB 200 mJ/cm2 for 1x irradiation. The mice’s back skin was taken 24 hours later to make histology slide and sunburn cell counting. Data were analyzed using One Way ANOVA comparative test, Post-hoc LSD test, and Spearman's rho correlative test with each significance value p<0.05.
Results ─ There are a significant difference in the mean number of sunburn cells in One Way ANOVA test p=0.00 (p<0.05) between all groups. LSD post-hoc test shows the group with the most significant mean difference (16.20) was between the negative control group and treatment group 4 (X4) with p=0.00 (p<0.05). There is a relationship between the dose of snail slime cream and the percentage of sunburn cells in the Spearman's rho test with p=0.00 (p<0.05) and the strength of the relationship between the dose of snail slime cream and the percentage of sunburn cells is very strong indicated by the Pearson Correlation (r)= -0.900.
Conclusion ─ Snail slime cream effectively inhibits the formation of sunburn cells with the most effective dose in this study is the 10% dose.
Article Details
This work is licensed under a Creative Commons Attribution 4.0 International License.
References
I. American Cancer Society. 2019. Ultraviolet (UV) Radiation (online). American Cancer Society. Diakses pada 31 Januari 2022
II. Chandra, S., Shabana, K., Bharathi, A., Hemant, L., Min, H. Y., Mahmoud, A. E., et al. 2014. Assesment of Total Phenolic and Flavonoid Content, Antioxidant Properties, and Yield of Aeroponically and Conventionally Grown Leafy Vegetable and Fruit Crops: a Comparative Study. Evidence-Based Complement Alternative Medicine, 14(1): 1-9.
III. Gabros S., Trevor, A., dan Patrick, M. Z. 2021. Sunscreens And Photoprotection (online). StatPearls Publishing. Diakses pada 17 Januari 2022.
IV. Goettsch, W., Johan, G., Frank, R. G., Paul, D., Henk, L. 1999. Methods for Exposure of Laboratory Animals to Ultraviolet Radiation. SAGE Journals, 33(1): 58-67.
V. Guerra K. C., Katelyn, K., Crane, J. S. 2021. Sunburn. National Center for Biotechnology Information. Tersedia di: https://www.ncbi.nlm.nih.gov/books/NBK534837/. Diakses 23 Juni 2022.
VI. Jacoeb, A. M., Purwaningsih, S., Rinto. 2011. Anatomi, Komponen Bioaktif dan Aktivitas Antioksidan Daun Mangrove Apiapi (Avicenia marina). Jurnal Pengolahan Hasil Perikanan Indonesia, 14(2): 141-150.
VII. Kaur, A., Purva, T., Bharti, S. 2014. Need of UV Protection and Evalution of Efficacy of Sunscreens. Journal of Cosmetic Science, 65(5): 315-345.
VIII. Khanam, N. S., Saxena, P. N., Nishi, S. 2014. Anatomical Changes in the Skin of Rattus norvegicus after Artificial UV Exposure. Journal of Advanced Laboratory Research in Biology, 5(3): 72-78.
IX. Komala, N. 2017. Analisis Lapisan Ozon, Indeks Ultra Violet dan Fraksi Awan di Pulau Jawa Berbasis Data Satelit Aura-OMI. Seminar Nasional Kimia dan Pendidikan Kimia IX (prosiding). Surakarta.
X. Liu, H. M., Cheng, M. Y., Xun, M. H., Zhao, Z. W., Zhang, Y., Tang, W., et al. 2023. Possible Mechanisms of Oxidative Stress-Induced Skin Cellular Senescence, Inflammation, and Cancer and the Therapeutic Potential of Plant Polyphenols. International Journal of Molecular Sciences, 24(4): 3755-3786.
XI. Maimun, Z. A., Cholid, T. T., 2006. Peran Mitokondria dalam Apoptosis. Buletin Alara, 18(2): 106-112.
XII. Ristanto, S., Choirul, H., dan Affandi, F. K. 2021. Pengukuran Indeks Ultraviolet Matahari dan Atenuasinya Oleh Beberapa Bahan Untuk Rekomendasi Waktu Aman Berjemur. Indonesian Journal of Applied Physics, 11(2): 248-255.
XIII. Rizzi, V., Jennifer, G., Paola, F., Sergio, N., Angela, A., Pinalysa, C. 2021. Snail Slime-based Gold Nanoparticles: An Interesting Potential Ingredient in Cosmetics as an Antioxidant, Sunscreen, and Tyrosinase Inhibitor. Journal of Photochemistry & Photobiology, B: Biology, 224(1): 1-9.
XIV. Soetrisno, K., Prasetyowati, dan S., Atina, H. 2020. The Administration of Topical Aloe Vera Extract Reduce the Number of Sunburn Cells and Expression of Caspase-3 on Post UVB-lightexposure Epidermis. Sains Medika, 10(2): 89-96.
XV. Staikou, A., Garefalaki, M. 2017. Method for producing a snail extract from Cornu aspersum and its extract. European Patent, EP3124030A1. Tersedia pada : https://patentimages.storage.googleapis.com/69/12/68/8b939e1051cef9/EP3124030A1.pdf
XVI. Suhesti, I., Riyan, S., Nabila, N. I., dan Cinti, A. 2021. Uji Aktivitas Antioksidan dan Sun Protection Factor (SPF) Lendir Bekicot (Achatina fulica) Menggunakan Spektrofotometer UV-VIS. Media Farmasi, 18(2): 70-86.
XVII. Umarudin, Widyarti, S., Warsito, Rahayu, S. 2022. Effect of Lissachatina fulica Chitosan on The Antioxidant and Lipid Profile of Hypercholesterolemic Male Wistar Rats. Journal of Pharmacy and Pharmacognosy Research, 10(6): 995–1005.
XVIII. Wilvestra, S., Sri, L., dan Ennesta, A. 2018. Studi Retrospektif Kanker Kulit di Poliklinik Ilmu Kesehatan Kulit dan Kelamin RS Dr. M. Djamil Padang Periode Tahun 2015-2017. Jurnal Kesehatan Andalas, 7(3): 47-49.
XIX. Wiya, C., Nantarat, N., dan Saenphet, K. 2020. Antiinflammatory Activity of Slime Extract from Giant African Snail (Lissachatina fulica). Indian Journal of Pharmaceutical Sciences, 82(3): 508-514.
XX. Younus, H. 2018. Therapeutic Potentials of Superoxide Dismutase. International Journal of Health Sciences, 12(3): 88-93.