Ophthalmological Metabolic Diseases and Stem Cells

Main Article Content

Héctor Zúñiga- Gazcón
Miguel Angel Flores D elgado
Diego Eduardo Saavedra Mayorga
Luis Antonio Villalobos Calderon
María Holanda García Ramírez

Abstract

Ocular pathologies are, without a doubt, one of the most complicated at the time of regulating medical therapy. Being one of the most relevant sense organs (if not the most important) the use of stem cells in the treatment of metabolic diseases that were previously considered to be slow-progressing, significant improvement can now be achieved.

Article Details

How to Cite
Gazcón, H. Z.-., elgado, M. A. F. D., Mayorga, D. E. S. ., Calderon, L. A. V. ., & Ramírez, M. H. G. . (2022). Ophthalmological Metabolic Diseases and Stem Cells. International Journal of Medical Science and Clinical Research Studies, 2(07), 680–686. https://doi.org/10.47191/ijmscrs/v2-i7-15
Section
Articles

References

I. Iftimia-Mander A, Hourd P, Dainty R, Thomas RJ. Mesenchymal Stem Cell Isolation from Human Umbilical Cord Tissue: Understanding and Minimizing Variability in Cell Yield for Process Optimization. Biopreservation and Biobanking. 2013;11(5):291–298.

II. Diabetic neuropathy. Nat Rev Dis Primers. 2019;5(1):42.

III. Rübsam A, Parikh S, Fort P. Role of inflammation in diabetic retinopathy. Int J Mol Sci. 2018;19(4):942.

IV. Wang F, Zhang J, Yu J, Liu S, Zhang R, Ma X, et al. Diagnostic accuracy of monofilament tests for detecting diabetic peripheral neuropathy: A systematic review and meta-analysis. J Diabetes Res. 2017;2017:1–12.

V. Wang W, Lo ACY. Diabetic retinopathy: Pathophysiology and treatments. Int J Mol Sci [Internet]. 2018;19(6). Available from: http://dx.doi.org/10.3390/ijms19061816

VI. Chang C-C, Chen C-Y, Chang G-D, Chen T-H, Chen W-L, Wen H-C, et al. Hyperglycemia and advanced glycation end products (AGEs) suppress the differentiation of 3T3-L1 preadipocytes. Oncotarget. 2017;8(33):55039–50.

VII. Orestes P, Osuru HP, McIntire WE, Jacus MO, Salajegheh R, Jagodic MM, et al. Reversal of neuropathic pain in diabetes by targeting glycosylation of Ca(V)3.2 T-type calcium channels. Diabetes. 2013;62(11):3828–38.

VIII. Gong M, Yu B, Wang J, Wang Y, Liu M, Paul C, et al. Mesenchymal stem cells release exosomes that transfer miRNAs to endothelial cells and promote angiogenesis. Oncotarget. 2017;8(28):45200–12.

IX. Pramanik S, Sulistio YA, Heese K. Neurotrophin signaling and stem cells-implications for neurodegenerative diseases and stem cell therapy. Mol Neurobiol. 2017;54(9):7401–59.

X. Xiao N, Le Q-T. Neurotrophic factors and their potential applications in tissue regeneration. Arch Immunol Ther Exp (Warsz). 2016;64(2):89–99.

XI. Feng G-S. Shp2-mediated molecular signaling in control of embryonic stem cell self-renewal and differentiation. Cell Res. 2007;17(1):37–41.

XII. Lavia C, Dallorto L, Maule M, Ceccarelli M, Fea AM. Minimally-invasive glaucoma surgeries (MIGS) for open angle glaucoma: A systematic review and meta-analysis. PLOS ONE. 2017;12(8):0183142.

XIII. Zhou Y-S, Xu J, Peng J, Li P, Wen X-J, Liu Y, et al. Research progress of stem cells on glaucomatous optic nerve injury. Int J Ophthalmol. 2016;9(8):1226–9.

XIV. Dąbrowska AM, Skopiński P. Stem cells in regenerative medicine - from laboratory to clinical application - the eye. Cent Eur J Immunol. 2017;42(2):173–80.

XV. Harrell CR, Fellabaum C, Arsenijevic A, Markovic BS, Djonov V, Volarevic V. Therapeutic potential of mesenchymal stem cells and their secretome in the treatment of glaucoma. Stem Cells Int. 2019;2019:7869130.

XVI. Yan P-S, Tang S, Zhang H-F, Guo Y-Y, Zeng Z-W, Wen Q. Nerve growth factor protects against palmitic acid-induced injury in retinal ganglion cells. Neural Regen Res. 2016;11(11):1851–6.

XVII. Shen Y, Inoue N, Heese K. Neurotrophin-4 (ntf4) mediates neurogenesis in mouse embryonic neural stem cells through the inhibition of the signal transducer and activator of transcription-3 (stat3) and the modulation of the activity of protein kinase B. Cell Mol Neurobiol. 2010;30(6):909–16.

XVIII. Harrell CR, Simovic Markovic B, Fellabaum C, Arsenijevic A, Djonov V, Arsenijevic N, et al. Therapeutic potential of mesenchymal stem cell-derived exosomes in the treatment of eye diseases. In: Advances in Experimental Medicine and Biology. Cham: Springer International Publishing; 2018. p. 47–57.

XIX. Osborne A, Sanderson J, Martin KR. Neuroprotective effects of human mesenchymal stem cells and platelet-derived growth factor on human retinal ganglion cells: Stem cell protection and the human retina. Stem Cells. 2018;36(1):65–78.

XX. Jonas JB, Aung T, Bourne RR, Bron AM, Ritch R, Panda-Jonas S. Glaucoma. Lancet. 2017;390(10108):2183–93.

XXI. Jonas JB, Monés J, Glacet-Bernard A, Coscas G. Retinal vein occlusions. Dev Ophthalmol. 2017;58:139–67.

XXII. Agard E, El Chehab H, Vie A-L, Voirin N, Coste O, Dot C. Retinal vein occlusion and obstructive sleep apnea: a series of 114 patients. Acta Ophthalmol. 2018;96(8):e919–25.

XXIII. Stitt AW, O’Neill CL, O’Doherty MT, Archer DB, Gardiner TA, Medina RJ. Vascular stem cells and ischaemic retinopathies. Prog Retin Eye Res. 2011;30(3):149–66.

XXIV. Chatziralli I, Theodossiadis G, Chatzirallis A, Parikakis E, Mitropoulos P, Theodossiadis P. RANIBIZUMAB FOR RETINAL VEIN OCCLUSION: Predictive factors and long-term outcomes in real-life data. Retina. 2018;38(3):559–68.

XXV. Gounari E, Nanaki S, Komnenou A, Karampatakis V, Bikiaris D, Koliakos G. Determination of the therapeutic effect of the intravitreal administration of autologous adipose derived-mesenchymal stromal cells combined with anti-VEGF nanocarriers, in an animal model of induced retinal vein occlusion. Cytotherapy. 2020;22(5):S28.

XXVI. Medina RJ, O’Neill CL, Humphreys MW, Gardiner TA, Stitt AW. Outgrowth endothelial cells: characterization and their potential for reversing ischemic retinopathy. Invest Ophthalmol Vis Sci. 2010;51(11):5906–13.

XXVII. Watson S, Cabrera-Aguas M, Khoo P. Common eye infections. Aust Prescr. 2018;41(3):67–72.

XXVIII. Alcayaga-Miranda F, Cuenca J, Khoury M. Antimicrobial activity of mesenchymal stem cells: Current status and new perspectives of antimicrobial peptide-based therapies. Front Immunol. 2017;8:339.

XXIX. Esfandiyari R, Halabian R, Behzadi E, Sedighian H, Jafari R, Imani Fooladi AA. Performance evaluation of antimicrobial peptide ll-37 and hepcidin and β-defensin-2 secreted by mesenchymal stem cells. Heliyon. 2019;5(10):e02652.

XXX. Fabisiak A, Murawska N, Fichna J. LL-37: Cathelicidin-related antimicrobial peptide with pleiotropic activity. Pharmacol Rep. 2016;68(4):802–8.

XXXI. Stewart MH, Bendall SC, Bhatia M. Deconstructing human embryonic stem cell cultures: niche regulation of self-renewal and pluripotency. J Mol Med. 2008;86(8):875–86.

XXXII. Bishop E, Ismailova A, Dimeloe SK, Hewison M, White JH. Vitamin D and immune regulation: antibacterial, antiviral, anti-inflammatory. JBMR Plus [Internet]. 2020; Available from: http://dx.doi.org/10.1002/jbm4.10405

XXXIII. Wang Z, Wang X, Wang J. Recent advances in antibacterial and antiendotoxic peptides or proteins from marine resources. Mar Drugs. 2018;16(2):57.

XXXIV. Gupta S, Bhatia G, Sharma A, Saxena S. Host defense peptides: An insight into the antimicrobial world. J Oral Maxillofac Pathol. 2018;22(2):239.

XXXV. Si̇ni̇m Kahraman N, Öner A. Stem cell treatment in degenerative retinal and optic nerve diseases. Trak Univ J Nat Sci [Internet]. 2019; Available from: https://dergipark.org.tr/en/download/article-file/636867

XXXVI. Öner A. Stem cell treatment in retinal diseases: Recent developments. 2018;48(1):33–8.

XXXVII. da Cruz L, Fynes K, Georgiadis O, Kerby J, Luo YH, Ahmado A, et al. Phase 1 clinical study of an embryonic stem cell-derived retinal pigment epithelium patch in age-related macular degeneration. Nat Biotechnol. 2018;36(4):328–37.

XXXVIII. Liu Y, Xu HW, Wang L, Li SY, Zhao CJ, Hao J, et al. Human embryonic stem cell-derived retinal pigment epithelium transplants as a potential treatment for wet age-related macular degeneration. Cell Discov. 2018;4(1):50.

XXXIX. Zhu D, Xie M, Gademann F, Cao J, Wang P, Guo Y, et al. Protective effects of human iPS-derived retinal pigmented epithelial cells on retinal degenerative disease. Stem Cell Res Ther. 2020;11(1):98.

XL. Sivan PP, Syed S, Mok P-L, Higuchi A, Murugan K, Alarfaj AA, et al. Stem cell therapy for treatment of ocular disorders. Stem Cells Int. 2016;2016:8304879.

XLI. Upadhyay RK, Department of Zoology, D.D.U Gorakhpur University, Gorakhpur 273009, U.P, India. Cell replacement therapy for optic nerve disorders. J stem cell regen biol. 2017;3(2):145–57.

XLII. Mok PL, Leong CF, Cheong SK. Cellular mechanisms of emerging applications of mesenchymal stem cells. Malays J Pathol. 2013;35(1):17–32.

XLIII. Singh MS, Park SS, Albini TA, Canto-Soler MV, Klassen H, MacLaren RE, et al. Retinal stem cell transplantation: Balancing safety and potential. Progress in Retinal and Eye Research. 2019;100779:100779.

XLIV. Rabesandratana O, Goureau O, Orieux G. Pluripotent stem cell-based approaches to explore and treat optic neuropathies. Front Neurosci. 2018;12:651.

XLV. Labrador-Velandia S, Alonso-Alonso ML, Alvarez-Sanchez S, González-Zamora J, Carretero-Barrio I, Pastor JC, et al. Mesenchymal stem cell therapy in retinal and optic nerve diseases: An update of clinical trials. World J Stem Cells. 2016;8(11):376–83.

XLVI. Mesentier-Louro LA, Teixeira-Pinheiro LC, Gubert F, Vasques JF, Silva-Junior AJ, Chimeli-Ormonde L, et al. Long-term neuronal survival, regeneration, and transient target reconnection after optic nerve crush and mesenchymal stem cell transplantation. Stem Cell Res Ther. 2019;10(1):121.

XLVII. Stern JH, Tian Y, Funderburgh J, Pellegrini G, Zhang K, Goldberg JL, et al. Regenerating eye tissues to preserve and restore vision. Cell Stem Cell. 2018;22(6):834–49.

XLVIII. Engelberg Y, Landau M. The Human LL-37(17-29) antimicrobial peptide reveals a functional supramolecular structure. Nat Commun. 2020;11(1):3894.

XLIX. Sivapatham R, Zeng X. Generation and characterization of patient-specific induced pluripotent stem cell for disease modeling. Methods Mol Biol. 2016;1353:25–44.

L. Schweiger PJ, Jensen KB. Modeling human disease using organotypic cultures. Curr Opin Cell Biol. 2016;43:22–9.

LI. Ho BX, Pek NMQ, Soh B-S. Disease modeling using 3D organoids derived from human induced pluripotent stem cells. Int J Mol Sci [Internet]. 2018;19(4). Available from:

http://dx.doi.org/10.3390/ijms19040936

LII. Sommer AC, Blumenthal EZ. Implementations of 3D printing in ophthalmology. Arbeitsphysiologie. 2019;257(9):1815–22.

LIII. Teshigawara R, Cho J, Kameda M, Tada T. Mechanism of human somatic reprogramming to iPS cell. Lab Invest. 2017;97(10):1152–7.

Most read articles by the same author(s)