Case Report: Resistance to Neuromuscular Blockade and the Benefits of Quantitative Monitoring

Main Article Content

Nicolas Antonio Benitez Monroy
Maria José Medina Rosado
Mayra Isela Gálvez Vázquez
Fernando Alberto Avelar Ocampo
Iliana Pool Carbajal

Abstract

Neuromuscular blockade (NMB) monitoring is essential in modern anesthetic practice, particularly for optimizing the administration of blocking agents and their reversal agents. We present the case of a 54-year-old female patient with a history of chronic carbamazepine use and monoplegia, who underwent a laparoscopic cholecystectomy. Despite the administration of standard and additional doses of rocuronium, significant resistance to NMB was observed, along with difficulty maintaining the surgical field, as confirmed by quantitative monitoring. The patient showed rapid recovery from the blockade without the need for reversal agents, highlighting the crucial role of continuous monitoring in intraoperative decision-making. This case underscores the importance of considering factors such as anticonvulsant use and neurological disorders in NMB response and emphasizes the impact of quantitative monitoring in resource-limited settings to enhance perioperative safety and outcomes.

Article Details

How to Cite
Benitez Monroy, N. A. ., Medina Rosado, M. J., Mayra Isela Gálvez Vázquez, Fernando Alberto Avelar Ocampo, & Iliana Pool Carbajal. (2025). Case Report: Resistance to Neuromuscular Blockade and the Benefits of Quantitative Monitoring. International Journal of Medical Science and Clinical Research Studies, 5(2), 324–328. https://doi.org/10.47191/ijmscrs/v5-i02-24
Section
Articles

References

I. Klein AA, Meek T, Allcock E et al. Recommendations for standards of monitoring during anaesthesia and recovery 2021. Anaesth. 2021;76(9):1212–1223. http://dx.doi.org/10.1111/anae.15501

II. Fuchs-Buder T, Romero CS, Lewald H et al. Peri-operative management of neuromuscular blockade. Eur J Anaesthesiol. 2023;40(2):82–94. http://dx.doi.org/10.1097/EJA.0000000000001769

III. Thilen SR, Weigel WA, Todd MM et al. 2023 American society of anesthesiologists practice guidelines for monitoring and antagonism of neuromuscular blockade. Anesthesiol. 2023;138(1):13–41. http://dx.doi.org/10.1097/ALN.0000000000004379

IV. Rodney G, Raju P, Brull SJ. Neuromuscular block management: evidence-based principles and practice. BJA Educ. 2024;24(1):13–22. http://dx.doi.org/10.1016/j.bjae.2023.10.005

V. Fuchs-Buder T, DE Robertis E, Brunaud L. Neuromuscular block in laparoscopic surgery. Minerva Anestesiol. 2018;84(4):509–514. http://dx.doi.org/10.23736/S0375-9393.17.12330-8

VI. Liu S, He B, Deng L, Li Q, Wang X. Does deep neuromuscular blockade provide improved perioperative outcomes in adult patients? A systematic review and meta-analysis of randomized controlled trials. PLoS One. 2023;18(3):e0282790. http://dx.doi.org/10.1371/journal.pone.0282790

VII. Raval AD, Deshpande S, Rabar S et al. Does deep neuromuscular blockade during laparoscopy procedures change patient, surgical, and healthcare resource outcomes? A systematic review and meta-analysis of randomized controlled trials. PLoS One. 2020;15(4):e0231452.

VIII. Richebé P, Bousette N, Fortier L-P. A narrative review on the potential benefits and limitations of deep neuromuscular blockade. Anaesth Crit Care Pain Med. 2021;40(4):100915. http://dx.doi.org/10.1016/j.accpm.2021.100915

IX. Blobner M, Frick CG, Stäuble RB et al. Neuromuscular blockade improves surgical conditions (NISCO). Surg Endosc. 2015;29(3):627–636. http://dx.doi.org/10.1007/s00464-014-3711-7

X. Hayakawa H, Pincott ES, Ali U. Anaesthesia and cerebral palsy. BJA Educ. 2022;22(1):26–32. http://dx.doi.org/10.1016/j.bjae.2021.08.003

XI. Adams DC, Heyer EJ. Problems of anesthesia in patients with neuromuscular disease. Anesthesiol Clin North America. 1997;15(3):673–689. http://dx.doi.org/10.1016/s0889-8537(05)70357-6

XII. Jung KT, An TH. Updated review of resistance to neuromuscular blocking agents. Anesth Pain Med. 2018;13(2):122–127. http://dx.doi.org/10.17085/apm.2018.13.2.122

XIII. Carter EL, Adapa RM. Adult epilepsy and anaesthesia. BJA Educ. 2015;15(3):111–117. http://dx.doi.org/10.1093/bjaceaccp/mku014

XIV. Tempelhoff R, Modica PA, Jellish WS, Spitznagel EL. Resistance to atracurium-induced neuromuscular blockade in patients with intractable seizure disorders treated with anticonvulsants. Anesth Analg. 1990;71(6):665–669. http://dx.doi.org/10.1213/00000539-199012000-00015

XV. Alloul K, Whalley DG, Shutway F, Ebrahim Z, Varin F. Pharmacokinetic origin of carbamazepine-induced resistance to vecuronium neuromuscular blockade in anesthetized patients. Anesthesiol. 1996;84(2):330–339. http://dx.doi.org/10.1097/00000542-199602000-00010

XVI. Spacek A, Neiger FX, Spiss CK, Kress HG. Atracurium-induced neuromuscular block is not affected by chronic anticonvulsant therapy with carbamazepine. Acta Anaesthesiol Scand. 1997;41(10):1308–1311. http://dx.doi.org/10.1111/j.1399-6576.1997.tb04649.x

XVII. Spacek A, Neiger FX, Spiss CK, Kress HG. Chronic carbamazepine therapy does not influence mivacurium-induced neuromuscular block. Br J Anaesth. 1996;77(4):500–2. http://dx.doi.org/10.1093/bja/77.4.500

XVIII. Spacek A, Neiger FX, Krenn CG, Hoerauf K, Kress HG. Rocuronium-induced neuromuscular block is affected by chronic carbamazepine therapy. Anesthesiol. 1999;90(1):109–112. http://dx.doi.org/10.1097/00000542-199901000-00016

XIX. Soriano, S. G., Kaus, S. J., Sullivan, L. J., & Martyn, J. A. Onset and duration of action of rocuronium in children receiving chronic anticonvulsant therapy. Paediatric Anaesthesia, 2000;10(2), 133–136. https://doi.org/10.1046/j.1460-9592.2000.00472.x

XX. Soriano SG, Sullivan LJ, Venkatakrishnan K, Greenblatt DJ, Martyn JAJ. Pharmacokinetics and pharmacodynamics of vecuronium in children receiving phenytoin or carbamazepine for chronic anticonvulsant therapy. Br J Anaesth. 2001;86(2):223–229. http://dx.doi.org/10.1093/bja/86.2.223

XXI. Moorthy SS, Krishna G, Dierdorf SF. Resistance to vecuronium in patients with cerebral palsy. Anesth Analg. 1991;73(3):275–277. http://dx.doi.org/10.1213/00000539-199109000-00008

XXII. Hepaguşlar H, Ozzeybek D, Elar Z. The effect of cerebral palsy on the action of vecuronium with or without anticonvulsants. Anaesth. 1999;54(6):593–596. http://dx.doi.org/10.1046/j.1365-2044.1999.00799.x

XXIII. Robinson KG, Mendonca JL, Militar JL et al. Disruption of basal lamina components in neuromotor synapses of children with spastic quadriplegic cerebral palsy. PLoS One. 2013;8(8):e70288. http://dx.doi.org/10.1371/journal.pone.0070288

XXIV. Lee S, Robinson K, Lodge M, Theroux M, Miller F, Akins R Jr. Resistance to neuromuscular blockade by rocuronium in surgical patients with spastic cerebral palsy. J Pers Med. 2021;11(8):765. http://dx.doi.org/10.3390/jpm11080765

XXV. Soriano SG, Martyn JAJ. Antiepileptic-induced resistance to neuromuscular blockers: mechanisms and clinical significance. Clin Pharmacokinet. 2004;43(2):71–81. https://doi.org/10.2165/00003088-200443020-00001