Sarscov-2 Antibody Response to COVID-19 MRNA Vaccine in 2024 among Health Care Workers Working in one Selected Public Hospital from Myanmar

Main Article Content

Khin Phyu Pyar
Aung Phyoe Kyaw
Kaung Myat Oo
Thein Tun Myint
Kyaw Thet Maung
Kyaw Zaya
Aung Thu
Han Lin Aung
Saw Tha Wah
Myo Thant Kyaw
Aung Phyo Latt
Zay Phyo Aung
Sitt Min
Win Min Tun
Aung Htoo Kyaw
Sai Su Phone
Ye Min Thu
Nyan Naing Soe
Wai Lynn Aung
Thant Zin Lynn

Abstract

Background: The health care workers have been handling with patients who may have symptomatic or asymptomatic coronavirus disease (COVID-19) since 2019. SARS-CoV-2 virus has been producing several variants. (Comirnaty) COVID-19 mRNA Vaccine (nucleoside modified) tozinameran was available in Myanmar in January 2024. This study aimed to assess changes in SARSCoV-2 antibody level in health care workers (HCW) following COVID-19 mRNA Vaccine and to determine the factors influencing antibody response.


Methods: An analytic study was conducted in Defense Services General Hospital (1,000 Bedded) in Myanmar in 2024. SARSCoV-2 antibody level was measured twice; prior to COVID-19 mRNA Vaccine and 70 days after vaccination. Data were collected by using standardized forms and analysis was done.


Results: A total of 99 HCW were included. All HCW had anti-Spike antibody prior to COVID-19 mRNA Vaccine (basal level); and the minimum level was 904 U/mL. Minimum antibody level as well as mean antibody level became double on Day ‘70’ after vaccination. Mean basal anti-Spike antibody level was 4,195.04 ± 2898.20 U/mL; it rose to 9,115.31± 3518.89 U/mL on Day ‘70’. Female had higher basal anti-Spike antibody level as well as the antibody level on Day ‘70’ than male; the basal level was 7,365 ± 5,460.97 U/mL and 3,878.04 ± 2,334.64 U/mL;  and, ‘Day 70’ level was 10,404.67±4,725.860 U/mL and 8,894.85±3,487.904 U/mL respectively. HCW aged over 40 years had higher basal anti-Spike antibody level than that of under 40 years; 5,634.42 ± 3,801.08 U/mL and 3,538.85 ± 2,102.61 U/mL respectively. However, on Day ‘70’, younger age group had better response; 9,564.37±3,265.608 U/mL in younger age group and 7,864.55±4,098.874 U/mL in older age group.


Antibody level on ‘Day 70’ was higher in HCW without comorbid disease and HCW with COVID symptoms at the time of vaccination. History of COVID-19 in past 6 months to 1 year prior to COVID-19 mRNA Vaccine did not influence the antibody response. The basal antibody level was lowest in underweight group (2,327.00±668.00 U/mL) and highest in overweight group 5,019.26±3,485.20 U/mL. On ‘Day 70’, the highest level 9,225.03±3,416.99 U/mL was recorded in normal weight group; it was followed by overweight group.


Conclusions: All HCW had had acquired immunity to SARSCoV-2 virus in January 2024. Their SARSCoV-2 antibody level became double on Day ‘70’ after one dose of (Comirnaty) COVID-19 mRNA Vaccine (nucleoside modified) tozinameran. Younger age group, female, HCW without comorbid disease, those with normal weight and overweight group, and  presence of COVID symptoms at the time of vaccination had better antibody response. Antibody response was not related with history of COVID-19 in past 6 months to 1 year. One dose of COVID-19 mRNA Vaccine was 100% effective in promoting anti-Spike antibody.

Article Details

How to Cite
Khin Phyu Pyar, Aung Phyoe Kyaw, Kaung Myat Oo, Thein Tun Myint, Kyaw Thet Maung, Kyaw Zaya, Aung Thu, Han Lin Aung, Saw Tha Wah, Myo Thant Kyaw, Aung Phyo Latt, Zay Phyo Aung, Sitt Min, Win Min Tun, Aung Htoo Kyaw, Sai Su Phone, Ye Min Thu, Nyan Naing Soe, Wai Lynn Aung, & Thant Zin Lynn. (2024). Sarscov-2 Antibody Response to COVID-19 MRNA Vaccine in 2024 among Health Care Workers Working in one Selected Public Hospital from Myanmar . International Journal of Medical Science and Clinical Research Studies, 4(08), 1489–1503. https://doi.org/10.47191/ijmscrs/v4-i08-13
Section
Articles

References

I. Alejo, J. L., Mitchell, J., Chang, A., Chiang, T. P. Y., Massie, A. B., Segev, D. L., & Makary, M. A. (2022). Prevalence and Durability of SARS-CoV-2 Antibodies Among Unvaccinated US Adults by History of COVID-19. JAMA, 327(11), 1085–1087. https://doi.org/10.1001/jama.2022.1393

II. Althoff, K. N., Schlueter, D. J., Anton-Culver, H., Cherry, J., Denny, J. C., Thomsen, I., Karlson, E. W., Havers, F. P., Cicek, M. S., Thibodeau, S. N., Pinto, L. A., Lowy, D., Malin, B. A., Ohno-Machado, L., Williams, C., Goldstein, D., Kouame, A., Ramirez, A., Roman, A., … on behalf of the All of Us Research Program. (2022). Antibodies to Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) in All of Us Research Program Participants, 2 January to 18 March 2020. Clinical Infectious Diseases, 74(4), 584–590. https://doi.org/10.1093/cid/ciab519

III. Anichini, G., Gandolfo, C., Terrosi, C., Fabrizi, S., Miceli, G., Gori Savellini, G., Prathyumnan, S., Franchi, F., & Cusi, M. G. (2021). Antibody response to SARS‐CoV‐2 in infected patients with different clinical outcome. Journal of Medical Virology, 93. https://doi.org/10.1002/jmv.26789

IV. Antibody Responses in COVID-19: A Review. (n.d.).

V. Benkeser, D., Montefiori, D. C., McDermott, A. B., Fong, Y., Janes, H. E., Deng, W., Zhou, H., Houchens, C. R., Martins, K., Jayashankar, L., Castellino, F., Flach, B., Lin, B. C., O’Connell, S., McDanal, C., Eaton, A., Sarzotti-Kelsoe, M., Lu, Y., Yu, C., … United States Government (USG)/CoVPN Biostatistics Teams. (n.d.). Comparing antibody assays as correlates of protection against COVID-19 in the COVE mRNA-1273 vaccine efficacy trial. Science Translational Medicine, 15(692), eade9078. https://doi.org/10.1126/scitranslmed.ade9078

VI. Berry, J. D., Jones, S., Drebot, M. A., Andonov, A., Sabara, M., Yuan, X. Y., Weingartl, H., Fernando, L., Marszal, P., Gren, J., Nicolas, B., Andonova, M., Ranada, F., Gubbins, M. J., Ball, T. B., Kitching, P., Li, Y., Kabani, A., & Plummer, F. (2004). Development and characterisation of neutralising monoclonal antibody to the SARS-coronavirus. Journal of Virological Methods, 120(1), 87–96. https://doi.org/10.1016/j.jviromet.2004.04.009

VII. Bruxvoort, K. J., Sy, L. S., Qian, L., Ackerson, B. K., Luo, Y., Lee, G. S., Tian, Y., Florea, A., Aragones, M., Tubert, J. E., Takhar, H. S., Ku, J. H., Paila, Y. D., Talarico, C. A., & Tseng, H. F. (2021). Effectiveness of mRNA-1273 against delta, mu, and other emerging variants of SARS-CoV-2: Test negative case-control study. BMJ, 375, e068848.

https://doi.org/10.1136/bmj-2021-068848

VIII. Cheetham, N. J., Kibble, M., Wong, A., Silverwood, R. J., Knuppel, A., Williams, D. M., Hamilton, O. K., Lee, P. H., Bridger Staatz, C., Di Gessa, G., Zhu, J., Katikireddi, S. V., Ploubidis, G. B., Thompson, E. J., Bowyer, R. C., Zhang, X., Abbasian, G., Garcia, M. P., Hart, D., … Steves, C. J. (2023). Antibody levels following vaccination against SARS-CoV-2: Associations with post-vaccination infection and risk factors in two UK longitudinal studies. eLife, 12, e80428. https://doi.org/10.7554/eLife.80428

IX. Chi, W.-Y., Li, Y.-D., Huang, H.-C., Chan, T. E. H., Chow, S.-Y., Su, J.-H., Ferrall, L., Hung, C.-F., & Wu, T.-C. (2022). COVID-19 vaccine update: Vaccine effectiveness, SARS-CoV-2 variants, boosters, adverse effects, and immune correlates of protection. Journal of Biomedical Science, 29(1), 82. https://doi.org/10.1186/s12929-022-00853-8

X. de Assis, R. R., Jain, A., Nakajima, R., Jasinskas, A., Felgner, J., Obiero, J. M., Adenaiye, O., Tai, S., Hong, F., Norris, P. J., Stone, M., Simmons, G., Bagri, A., Schreiber, M., Buser, A., Holbro, A., Battegay, M., Hosimer, P., Noesen, C., … Khan, S. (2020). Analysis of SARS-CoV-2 Antibodies in COVID-19 Convalescent Blood using a Coronavirus Antigen Microarray. In bioRxiv: The preprint server for biology (p. 2020.04.15.043364).

https://doi.org/10.1101/2020.04.15.043364

XI. Gardner, B. J., & Kilpatrick, A. M. (2024). Predicting Vaccine Effectiveness for Hospitalization and Symptomatic Disease for Novel SARS-CoV-2 Variants Using Neutralizing Antibody Titers. Viruses, 16(3). https://doi.org/10.3390/v16030479

XII. Hajissa, K., Mussa, A., Karobari, M. I., Abbas, M. A., Ibrahim, I. K., Assiry, A. A., Iqbal, A., Alhumaid, S., Mutair, A. A., Rabaan, A. A., Messina, P., & Scardina, G. A. (2022). The SARS-CoV-2 Antibodies, Their Diagnostic Utility, and Their Potential for Vaccine Development. Vaccines, 10(8).

https://doi.org/10.3390/vaccines10081346

XIII. Haq, Md. A., Roy, A. K., Ahmed, R., Kuddusi, R. U., Sinha, M., Hossain, Md. S., Vandenent, M., Islam, M. Z., Zaman, R. U., Kibria, Md. G., Razzaque, A., Raqib, R., & Sarker, P. (2024). Antibody longevity and waning following COVID-19 vaccination in a 1-year longitudinal cohort in Bangladesh. Scientific Reports, 14(1), 11467. https://doi.org/10.1038/s41598-024-61922-6

XIV. Higgins Victoria, Fabros Anselmo, & Kulasingam Vathany. (2021). Quantitative Measurement of Anti-SARS-CoV-2 Antibodies: Analytical and Clinical Evaluation. Journal of Clinical Microbiology, 59(4), 10.1128/jcm.03149-20. https://doi.org/10.1128/jcm.03149-20

XV. Hogan, A. B., Doohan, P., Wu, S. L., Mesa, D. O., Toor, J., Watson, O. J., Winskill, P., Charles, G., Barnsley, G., Riley, E. M., Khoury, D. S., Ferguson, N. M., & Ghani, A. C. (2023). Estimating long-term vaccine effectiveness against SARS-CoV-2 variants: A model-based approach. Nature Communications, 14(1), 4325. https://doi.org/10.1038/s41467-023-39736-3

XVI. Hwang, Y.-C., Lu, R.-M., Su, S.-C., Chiang, P.-Y., Ko, S.-H., Ke, F.-Y., Liang, K.-H., Hsieh, T.-Y., & Wu, H.-C. (2022). Monoclonal antibodies for COVID-19 therapy and SARS-CoV-2 detection. Journal of Biomedical Science, 29(1), 1. https://doi.org/10.1186/s12929-021-00784-w

XVII. Kara, Z., Akçin, R., Demir, A. N., Dinç, H. Ö., Taşkın, H. E., Kocazeybek, B., & Yumuk, V. D. (2022). Antibody Response to SARS-CoV-2 Vaccines in People with Severe Obesity. Obesity Surgery, 32(9), 2987–2993. https://doi.org/10.1007/s11695-022-06181-y

XVIII. Karamese, M., & Tutuncu, E. E. (2022). The effectiveness of inactivated SARS-CoV-2 vaccine (CoronaVac) on antibody response in participants aged 65 years and older. Journal of Medical Virology, 94(1), 173–177. https://doi.org/10.1002/jmv.27289

XIX. Kim, J. S., Sun, Y., Balte, P., Cushman, M., Boyle, R., Tracy, R. P., Styer, L. M., Bell, T. D., Anderson, M. R., Allen, N. B., Schreiner, P. J., Bowler, R. P., Schwartz, D. A., Lee, J. S., Xanthakis, V., Doyle, M. F., Regan, E. A., Make, B. J., Kanaya, A. M., … Oelsner, E. C. (2024). Demographic and Clinical Factors Associated With SARS-CoV-2 Spike 1 Antibody Response Among Vaccinated US Adults: The C4R Study. Nature Communications, 15(1), 1492. https://doi.org/10.1038/s41467-024-45468-9

XX. Li, D., Sempowski, G. D., Saunders, K. O., Acharya, P., & Haynes, B. F. (2022). SARS-CoV-2 Neutralizing Antibodies for COVID-19 Prevention and Treatment. In Annual Review of Medicine, (Vol. 73, Issue Volume 73, 2022, pp. 1–16). Annual Reviews,.

XXI. Lim, K., Nishide, G., Sajidah, E. S., Yamano, T., Qiu, Y., Yoshida, T., Kobayashi, A., Hazawa, M., Ando, T., Hanayama, R., & Wong, R. W. (2023). Nanoscopic Assessment of Anti-SARS-CoV-2 Spike Neutralizing Antibody Using High-Speed AFM. Nano Letters, 23(2), 619–628.

https://doi.org/10.1021/acs.nanolett.2c04270

XXII. Lombardi, A., Consonni, D., Oggioni, M., Bono, P., Uceda Renteria, S., Piatti, A., Pesatori, A. C., Castaldi, S., Muscatello, A., Riboldi, L., Ceriotti, F., Bandera, A., & Gori, A. (2021). SARS-CoV-2 anti-spike antibody titres after vaccination with BNT162b2 in naïve and previously infected individuals. Journal of Infection and Public Health, 14(8), 1120–1122. https://doi.org/10.1016/j.jiph.2021.07.005

XXIII. Malavazos, A. E., Basilico, S., Iacobellis, G., Milani, V., Cardani, R., Boniardi, F., Dubini, C., Prandoni, I., Capitanio, G., Renna, L. V., Boveri, S., Carrara, M., Spuria, G., Cuppone, T., D’acquisto, A., Carpinelli, L., Sacchi, M., Morricone, L., Secchi, F., … Corsi Romanelli, M. M. (2021). Antibody responses to BNT162b2 mRNA vaccine: Infection-naïve individuals with abdominal obesity warrant attention. medRxiv, 2021.09.10.21262710.

https://doi.org/10.1101/2021.09.10.21262710

XXIV. Menegale, F., Manica, M., Zardini, A., Guzzetta, G., Marziano, V., d’Andrea, V., Trentini, F., Ajelli, M., Poletti, P., & Merler, S. (2023). Evaluation of Waning of SARS-CoV-2 Vaccine–Induced Immunity: A Systematic Review and Meta-analysis. JAMA Network Open, 6(5), e2310650–e2310650.

https://doi.org/10.1001/jamanetworkopen.2023.10650

XXV. Müller, L., Andrée, M., Moskorz, W., Drexler, I., Walotka, L., Grothmann, R., Ptok, J., Hillebrandt, J., Ritchie, A., Rabl, D., Ostermann, P. N., Robitzsch, R., Hauka, S., Walker, A., Menne, C., Grutza, R., Timm, J., Adams, O., & Schaal, H. (2021). Age-dependent immune response to the Biontech/Pfizer BNT162b2 COVID-19 vaccination. medRxiv,

03.03.21251066. https://doi.org/10.1101/2021.03.03.21251066

XXVI. Nam, S. Y., Jeon, S. W., Lee, H. S., Lim, H. J., Lee, D. W., & Yoo, S. S. (2022). Demographic and Clinical Factors Associated With Anti–SARS-CoV-2 Antibody Levels After 2 BNT162b2 mRNA Vaccine Doses. JAMA Network Open, 5(5), e2212996–e2212996. https://doi.org/10.1001/jamanetworkopen.2022.12996

XXVII. Niyas, V. K. M., & Arjun, R. (2021). Response to letter re Breakthrough COVID-19 infections among health care workers after two doses of ChAdOx1 nCoV-19 vaccine. QJM : Monthly Journal of the Association of Physicians.

https://doi.org/10.1093/qjmed/hcab204

XXVIII. Ortega, N., Ribes, M., Vidal, M., Rubio, R., Aguilar, R., Williams, S., Barrios, D., Alonso, S., Hernández-Luis, P., Mitchell, R. A., Jairoce, C., Cruz, A., Jimenez, A., Santano, R., Méndez, S., Lamoglia, M., Rosell, N., Llupià, A., Puyol, L., … Dobaño, C. (2021). Seven-month kinetics of SARS-CoV-2 antibodies and role of pre-existing antibodies to human coronaviruses. Nature Communications, 12(1), 4740. https://doi.org/10.1038/s41467-021-24979-9

XXIX. Pyar, K. P. (2022). Breakthrough infections due to SARS-CoV-2 Wild type, the Delta variant and the Omicron variant in early fourth wave of epidemics in Myanmar. International Journal Of Medical Science And Clinical Research Studies, 02(02). https://doi.org/10.47191/ijmscrs/v2-i2-10

XXX. Pyar, K. P., Hla, S., Maung, K., Thu, A., Aung, H., Wynn, T., Wah, S., Kyaw, M., Aung, Z., Min, S., Oo, K., Tun, T., Aung, Z. N. H., Hlaing, S. W., Aung, S., Lin, M., & Kyaw, A. (2022). Anti-Spike Antibody Responses to Covid-19 Vaccine 3 Doses in Health Care Workers Working in Acute Care Hospital in Myanmar. 7, 2022.

XXXI. Pyar, K. P., Hla, S., Min, A., Wunn, D., Aung, Z. N., Lin, M., Win, T., Aung, L., Kyaw, A., Ya, K., Tun, T., Kyaw, M., Oo, Z., Aung, Z., Lin, T., & Htun, S. (2021). Breakthrough Infection among Fully Vaccinated Physicians Working in COVID-19 Treatment Centers; Prevalence, Presenting Symptoms, Co-Morbidities and Outcome in the Third Wave of Epidemics in Myanmar. Journal of Biomedical Research & Environmental Sciences, 2, 721–730. https://doi.org/10.37871/jbres1303

XXXII. Pyar, K. P., Hla, S., Thu, K., Lwin, Y., Shwe, W., Maung, L., Hein, Y., Aung, L., Thant, M., maung maung, M., Zaw, M., Lin, M., Phone, S., Kyaw, A., Aung, Z., Kyaw, M., Oo, Z., Oo, K., Ko, M., & Aung, Z. N. H. (2023). Anti-Spike Antibody Level Following COVID-19 Vaccine 4 Doses in Patients on Maintenance Hemodialysis in Government Hospital, Myanmar. 5, 519–527.

https://doi.org/10.32474/JCCM.2023.05.000204

XXXIII. Rangsrisaeneepitak, V., Porntharukchareon, T., Dechates, B., Sirisreetreerux, S., & Tawinprai, K. (2022). Antibody levels in people with diabetes after one dose of the ChAdOx1 nCoV-19 (AZD1222) vaccine. Diabetology International.

https://doi.org/10.1007/s13340-022-00582-1

XXXIV. Rodda, L. B., Morawski, P. A., Pruner, K. B., Fahning, M. L., Howard, C. A., Franko, N., Logue, J., Eggenberger, J., Stokes, C., Golez, I., Hale, M., Gale, M., Chu, H. Y., Campbell, D. J., & Pepper, M. (2022). Imprinted SARS-CoV-2-specific memory lymphocytes define hybrid immunity. Cell, 185(9), 1588-1601.e14. https://doi.org/10.1016/j.cell.2022.03.018

XXXV. Sharma, P., Mishra, S., Basu, S., Tanwar, N., & Kumar, R. (2021). Breakthrough infection with SARS-CoV-2 and its predictors among healthcare workers in a medical college and hospital complex in Delhi, India. medRxiv, 2021.06.07.21258447. https://doi.org/10.1101/2021.06.07.21258447

XXXVI. Sughayer, M. A., Souan, L., Abu Alhowr, M. M., Al Rimawi, D., Siag, M., Albadr, S., Owdeh, M., & Al Atrash, T. (2022). Comparison of the effectiveness and duration of anti-RBD SARS-CoV-2 IgG antibody response between different types of vaccines: Implications for vaccine strategies. Vaccine, 40(20), 2841–2847. https://doi.org/10.1016/j.vaccine.2022.03.069

XXXVII. Sumpaico-Tanchanco, L. B. C., Sy, J. C. Y., Dy, A. B. C., Levantino, M., Amit, A. M. L., Wong, J., Angeles, K., & Vergara, J. P. C. (2022). The prevalence of SARS-CoV-2 antibodies within the community of a private tertiary university in the Philippines: A serial cross sectional study. PloS One, 17(12), e0268145. https://doi.org/10.1371/journal.pone.0268145

XXXVIII. Tannous, J., Pan, A. P., Potter, T., Bako, A. T., Dlouhy, K., Drews, A., Sostman, H. D., & Vahidy, F. S. (2023). Real-world effectiveness of COVID-19 vaccines and anti-SARS-CoV-2 monoclonal antibodies against postacute sequelae of SARS-CoV-2: Analysis of a COVID-19 observational registry for a diverse US metropolitan population. BMJ Open, 13(4), e067611. https://doi.org/10.1136/bmjopen-2022-067611

XXXIX. Torres, J. L., Ozorowski, G., Andreano, E., Liu, H., Copps, J., Piccini, G., Donnici, L., Conti, M., Planchais, C., Planas, D., Manganaro, N., Pantano, E., Paciello, I., Pileri, P., Bruel, T., Montomoli, E., Mouquet, H., Schwartz, O., Sala, C., … Ward, A. B. (2022). Structural insights of a highly potent pan-neutralizing SARS-CoV-2 human monoclonal antibody. Proceedings of the National Academy of Sciences, 119(20), e2120976119.

https://doi.org/10.1073/pnas.2120976119

XL. Tyagi, K., Ghosh, A., Nair, D., Dutta, K., Singh Bhandari, P., Ahmed Ansari, I., & Misra, A. (2021). Breakthrough COVID19 infections after vaccinations in healthcare and other workers in a chronic care medical facility in New Delhi, India. Diabetes & Metabolic Syndrome: Clinical Research & Reviews, 15(3), 1007–1008.

https://doi.org/10.1016/j.dsx.2021.05.001

XLI. Wang, L., Li, J., Gao, Y., Li, R., Zhang, J., Su, D., Wang, T., Yang, G., & Wang, X. (2019). Association between coronary dominance and acute inferior myocardial infarction: A matched, case-control study. BMC Cardiovascular Disorders, 19(1), 35. https://doi.org/10.1186/s12872-019-1007-5

XLII. Ward, H., Whitaker, M., Flower, B., Tang, S. N., Atchison, C., Darzi, A., Donnelly, C. A., Cann, A., Diggle, P. J., Ashby, D., Riley, S., Barclay, W. S., Elliott, P., & Cooke, G. S. (2022). Population antibody responses following COVID-19 vaccination in 212,102 individuals. Nature Communications, 13(1), 907. https://doi.org/10.1038/s41467-022-28527-x

XLIII. Yamamoto, S., Mizoue, T., Tanaka, A., Oshiro, Y., Inamura, N., Konishi, M., Ozeki, M., Miyo, K., Sugiura, W., Sugiyama, H., & Ohmagari, N. (2022). Sex-associated differences between BMI and SARS-CoV-2 antibody titers following the BNT162b2 vaccine. Obesity (Silver Spring, Md.), 30(5), 999–1003. https://doi.org/10.1002/oby.23417

XLIV. Zeng, B., Gao, L., Zhou, Q., Yu, K., & Sun, F. (2022). Effectiveness of COVID-19 vaccines against SARS-CoV-2 variants of concern: A systematic review and meta-analysis. BMC Medicine, 20(1), 200. https://doi.org/10.1186/s12916-022-02397-y

Most read articles by the same author(s)