Unraveling the Complex Pathophysiology of Heart Failure with Preserved Ejection Fraction: Mechanistic Insights and Therapeutic Frontiers
Main Article Content
Abstract
Heart failure with preserved ejection fraction (HFpEF) represents a significant and growing subset of heart failure cases, characterized by clinical signs and symptoms of heart failure despite a normal or near-normal left ventricular ejection fraction (LVEF). Unlike heart failure with reduced ejection fraction (HFrEF), the pathophysiological mechanisms underlying HFpEF are multifactorial and complex, involving intricate interactions between comorbidities, myocardial structural and functional abnormalities, and systemic inflammatory responses. This review delves into the intricate pathophysiology of HFpEF, exploring the roles of myocardial fibrosis, ventricular-arterial coupling, endothelial dysfunction, and extracardiac factors such as obesity, diabetes, and hypertension. Understanding these mechanisms is crucial for the development of targeted therapeutic strategies aimed at improving patient outcomes in HFpEF.
Article Details
This work is licensed under a Creative Commons Attribution 4.0 International License.
References
I. Adams V., Alves M., Fischer T., Rolim N., Werner S., Schütt N., et al.. (2015). High-intensity interval training attenuates endothelial dysfunction in a Dahl salt-sensitive rat model of heart failure with preserved ejection fraction. J. Appl. Physiol. 119, 745–752. 10.1152/japplphysiol.01123.2014
II. Adams V., Reich B., Uhlemann M., Niebauer J. (2017). Molecular effects of exercise training in patients with cardiovascular disease: focus on skeletal muscle, endothelium, and myocardium. Am. J. Physiol. Circ. Physiol. 313, H72–H88. 10.1152/ajpheart.00470.2016
III. Ahmad T., Lund L. H., Rao P., Ghosh R., Warier P., Vaccaro B., et al. (2018). Machine learning methods improve prognostication, identify clinically distinct phenotypes, and detect heterogeneity in response to therapy in a large cohort of heart failure patients. J. Am. Heart Assoc. 7, 1–15.
1161/JAHA.117.008081
IV. Akiyama E., Sugiyama S., Matsuzawa Y., Konishi M., Suzuki H., Nozaki T., et al. (2012). Incremental prognostic significance of peripheral endothelial dysfunction in patients with heart failure with normal left ventricular ejection fraction. J. Am. Coll. Cardiol. 60, 1778–1786.
1016/j.jacc.2012.07.036
V. Asahara T., Murohara T., Sullivan A., Silver M., van der Zee R., Li T., et al.. (1997). Isolation of putative progenitor endothelial cells for angiogenesis. Science 275, 964–966.
1126/science.275.5302.964
VI. Baggish A. L., Hale A., Weiner R. B., Lewis G. D., Systrom D., Wang F., et al.. (2011). Dynamic regulation of circulating microRNA during acute exhaustive exercise and sustained aerobic exercise training. J. Physiol. 589, 3983–3994. 10.1113/jphysiol.2011.213363
VII. Bartel D. P. (2004). MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116, 281–297. 10.1016/S0092-8674(04)00045-5
VIII. Beale A. L., Meyer P., Marwick T. H., Lam C. S. P., Kaye D. M. (2018). Sex differences in cardiovascular pathophysiology. Circulation 138, 198–205. 10.1161/CIRCULATIONAHA.118.034271
IX. Berg A. H., Scherer P. E. (2005). Adipose tissue, inflammation, and cardiovascular disease. Circ. Res. 96, 939–949.
1161/01.RES.0000163635.62927.34
X. Bernardo B. C., Gao X.-M., Winbanks C. E., Boey E. J. H., Tham Y. K., Kiriazis H., et al. (2012). Therapeutic inhibition of the miR-34 family attenuates pathological cardiac remodeling and improves heart function. Proc. Natl. Acad. Sci. USA 109, 17615–17620. 10.1073/pnas.1206432109
XI. Bonauer A., Carmona G., Iwasaki M., Mione M., Koyanagi M., Fischer A., et al.. (2009). MicroRNA-92a controls angiogenesis and functional recovery of ischemic tissues in Mice. Science 324, 1710–1713. 10.1126/science.1174381
XII. Bonetti P. O., Pumper G. M., Higano S. T., Holmes D. R., Kuvin J. T., Lerman A. (2004). Noninvasive identification of patients with early coronary atherosclerosis by assessment of digital reactive hyperemia. J. Am. Coll. Cardiol. 44, 2137–2141. 10.1016/j.jacc.2004.08.062
XIII. Borlaug B. A. (2014). The pathophysiology of heart failure with preserved ejection fraction. Nat. Rev. Cardiol. 11, 507–515. 10.1038/nrcardio.2014.83,
XIV. Borlaug B. A., Olson T. P., Lam C. S. P., Flood K. S., Lerman A., Johnson B. D., et al. (2010). Global cardiovascular reserve dysfunction in heart failure with preserved ejection fraction. J. Am. Coll. Cardiol. 56, 845–854. 10.1016/j.jacc.2010.03.077
XV. Bowen T. S., Brauer D., Rolim N. P. L., Bækkerud F. H., Kricke A., Ormbostad Berre A., et al.. (2017). Exercise training reveals inflexibility of the diaphragm in an animal model of patients with obesity-driven heart failure with a preserved ejection fraction. J. Am. Heart Assoc. 6:e006416. 10.1161/JAHA.117.006416,
XVI. Brunner H., Cockcroft J. R., Deanfield J., Donald A., Ferrannini E., Halcox J., et al.. (2005). Endothelial function and dysfunction. Part II: association with cardiovascular risk factors and diseases. A statement by the Working Group on Endothelins and Endothelial Factors of the European Society of Hypertension. J. Hypertens. 23, 233–246. 10.1097/00004872-200502000-00001