Epigenetic Regulation of Gene Expression in the Development of Neurodegenerative Diseases: A Narrative Review
Main Article Content
Abstract
Neurodegenerative diseases have a significant impact on individuals and society. The exact causes of these diseases are not fully understood, but evidence suggests that a combination of genetic, environmental, and lifestyle factors contribute to their development. Methods: This narrative review explores the role of epigenetic regulation in gene expression during the development of neurodegenerative diseases. An exhaustive literature search was conducted using electronic databases, and articles focusing on epigenetic regulation in the context of neurodegenerative diseases were selected for analysis. Epigenetic mechanisms, including DNA methylation, histone modifications, and non-coding RNA molecules, play a crucial role in regulating gene activity and have significant implications for cellular function and disease development. Abnormal DNA methylation patterns have been associated with neurological disorders and neurodegenerative diseases, such as Alzheimer's disease and Parkinson's disease. Histone modifications have also been implicated in the regulation of gene expression in neurodegenerative diseases. Non-coding RNAs, including microRNAs and long non-coding RNAs, are involved in gene expression regulation and have been found to be dysregulated in neurodegenerative diseases. Conclusion: Understanding the role of epigenetics in neurodegenerative diseases offers insights into disease development and progression. It provides opportunities for the development of potential therapeutic strategies that target epigenetic modifications. However, studying epigenetic changes in neurodegenerative diseases presents challenges, including the complexity of epigenetic regulation and the heterogeneity of the diseases. Nonetheless, the therapeutic potential of epigenetic regulation in neurodegenerative diseases is promising, with potential strategies including DNA methylation modifiers, histone deacetylase inhibitors, microRNA-based therapies, lncRNA modulation, and epigenetic diets. Continued research is needed to further understand the underlying mechanisms and develop safe and effective treatments for neurodegenerative diseases.
Article Details
This work is licensed under a Creative Commons Attribution 4.0 International License.
References
I. Alaskhar Alhamwe, B., Khalaila, R., Wolf, J., von Bülow, V., Harb, H., Alhamdan, F., Hii, C. S., Prescott, S. L., Ferrante, A., Renz, H., Garn, H., & Potaczek, D. P. (2018). Histone modifications and their role in epigenetics of atopy and allergic diseases. Allergy, Asthma, and Clinical Immunology: Official Journal of the Canadian Society of Allergy and Clinical Immunology, 14, 39. https://doi.org/10.1186/s13223-018-0259-4
II. Alvarado-Cruz, I., Alegría-Torres, J. A., Montes-Castro, N., Jiménez-Garza, O., & Quintanilla-Vega, B. (2018). Environmental Epigenetic Changes, as Risk Factors for the Development of Diseases in Children: A Systematic Review. Annals of Global Health, 84(2), 212–224.
https://doi.org/10.29024/aogh.909
III. An, R.-P., Li, D.-Y., & Xiang, X.-L. (2021). Role of theories in school-based diabetes care interventions: A critical review. World Journal of Clinical Cases, 9(18), 4709–4720.
https://doi.org/10.12998/wjcc.v9.i18.4709
IV. Angelopoulou, E., Paudel, Y. N., Papageorgiou, S. G., & Piperi, C. (2022). Environmental Impact on the Epigenetic Mechanisms Underlying Parkinson’s Disease Pathogenesis: A Narrative Review. Brain Sciences, 12(2), 175.
https://doi.org/10.3390/brainsci12020175
V. Ao, C., Gao, L., & Yu, L. (2022). Research Progress in Predicting DNA Methylation Modifications and the Relation with Human Diseases. Current Medicinal Chemistry, 29(5), 822–836. https://doi.org/10.2174/0929867328666210917115733
VI. Azizi, Z., Mirtavoos-Mahyari, H., Karimi, R., Noroozi, Z., & Motevaseli, E. (2019). Long non-coding RNAs: Diverse roles in various disorders. Human Antibodies, 27(4), 221–225. https://doi.org/10.3233/HAB-190374
VII. Baltrėnaitė, E., & Baltrėnas, P. (2019). Using the method of dynamic factors for assessing the transfer of chemical elements from soil to plants from various perspectives. Environmental Science and Pollution Research International, 26(33), 34184–34196. https://doi.org/10.1007/s11356-018-3866-1
VIII. Bergmeier, H., Paxton, S. J., Milgrom, J., Anderson, S. E., Baur, L., Hill, B., Lim, S., Green, R., & Skouteris, H. (2020). Early mother-child dyadic pathways to childhood obesity risk: A conceptual model. Appetite, 144, 104459.
https://doi.org/10.1016/j.appet.2019.104459
IX. Braun, K. V. E., Voortman, T., Dhana, K., Troup, J., Bramer, W. M., Troup, J., Chowdhury, R., Dehghan, A., Muka, T., & Franco, O. H. (2016). The role of DNA methylation in dyslipidaemia: A systematic review. Progress in Lipid Research, 64, 178–191. https://doi.org/10.1016/j.plipres.2016.10.002
X. Chen, L., Guo, X., Li, Z., & He, Y. (2019). Relationship between long non-coding RNAs and Alzheimer’s disease: A systematic review. Pathology, Research and Practice, 215(1), 12–20. https://doi.org/10.1016/j.prp.2018.11.012
XI. Cicero, C. E., Mostile, G., Vasta, R., Rapisarda, V., Signorelli, S. S., Ferrante, M., Zappia, M., & Nicoletti, A. (2017a). Metals and neurodegenerative diseases. A systematic review. Environmental Research, 159, 82–94.
https://doi.org/10.1016/j.envres.2017.07.048
XII. Cicero, C. E., Mostile, G., Vasta, R., Rapisarda, V., Signorelli, S. S., Ferrante, M., Zappia, M., & Nicoletti, A. (2017b). Metals and neurodegenerative diseases. A systematic review. Environmental Research, 159, 82–94.
https://doi.org/10.1016/j.envres.2017.07.048
XIII. Davie, C. A. (2008). A review of Parkinson’s disease. British Medical Bulletin, 86, 109–127.
https://doi.org/10.1093/bmb/ldn013
XIV. de la Fuente-Fernández, R., Sossi, V., Huang, Z., Furtado, S., Lu, J.-Q., Calne, D. B., Ruth, T. J., & Stoessl, A. J. (2004). Levodopa-induced changes in synaptic dopamine levels increase with progression of Parkinson’s disease: Implications for dyskinesias. Brain: A Journal of Neurology, 127(Pt 12), 2747–2754. https://doi.org/10.1093/brain/awh290
XV. Dik, S., Scheepers, P. T. J., & Godderis, L. (2012). Effects of environmental stressors on histone modifications and their relevance to carcinogenesis: A systematic review. Critical Reviews in Toxicology, 42(6), 491–500.
https://doi.org/10.3109/10408444.2012.684146
XVI. El-Agnaf, O., Overk, C., Rockenstein, E., Mante, M., Florio, J., Adame, A., Vaikath, N., Majbour, N., Lee, S.-J., Kim, C., Masliah, E., & Rissman, R. A. (2017). Differential effects of immunotherapy with antibodies targeting α-synuclein oligomers and fibrils in a transgenic model of synucleinopathy. Neurobiology of Disease, 104, 85–96.
https://doi.org/10.1016/j.nbd.2017.05.002
XVII. Emard, J. F., Thouez, J. P., & Gauvreau, D. (1995). Neurodegenerative diseases and risk factors: A literature review. Social Science & Medicine (1982), 40(6), 847–858.
https://doi.org/10.1016/0277-9536(94)00138-j
XVIII. Emfietzoglou, R., Pachymanolis, E., & Piperi, C. (2021). Impact of Epigenetic Alterations in the Development of Oral Diseases. Current Medicinal Chemistry, 28(6), 1091–1103.
https://doi.org/10.2174/0929867327666200114114802
XIX. Fenoglio, C., Scarpini, E., & Galimberti, D. (2018). Epigenetic regulatory modifications in genetic and sporadic frontotemporal dementia. Expert Review of Neurotherapeutics, 18(6), 469–475.
https://doi.org/10.1080/14737175.2018.1481389
XX. Fontes Marx, M., Ataguba, J. E., de Vries, J., & Wonkam, A. (2021). Systematic Review of the Economic Evaluation of Returning Incidental Findings in Genomic Research. Frontiers in Public Health, 9, 697381.
https://doi.org/10.3389/fpubh.2021.697381
XXI. Hemshekhar, M., Thushara, R. M., Kumar, S. K. N., Paul, M., Sundaram, M. S., Kemparaju, K., & Girish, K. S. (2018). Bone Degeneration, Inflammation and Secondary Complications of Arthritis: Potential Targets and their Natural Inhibitors. Mini Reviews in Medicinal Chemistry, 18(3), 244–275.
https://doi.org/10.2174/1389557517666170315144233
XXII. Hohman, T. J., Tommet, D., Marks, S., Contreras, J., Jones, R., Mungas, D., & Alzheimer’s Neuroimaging Initiative. (2017). Evaluating Alzheimer’s disease biomarkers as mediators of age-related cognitive decline. Neurobiology of Aging, 58, 120–128.
https://doi.org/10.1016/j.neurobiolaging.2017.06.022
XXIII. Jalaiei, A., Asadi, M. R., Sabaie, H., Dehghani, H., Gharesouran, J., Hussen, B. M., Taheri, M., Ghafouri-Fard, S., & Rezazadeh, M. (2021). Long Non-Coding RNAs, Novel Offenders or Guardians in Multiple Sclerosis: A Scoping Review. Frontiers in Immunology, 12, 774002.
https://doi.org/10.3389/fimmu.2021.774002
XXIV. Karlsson Linnér, R., Marioni, R. E., Rietveld, C. A., Simpkin, A. J., Davies, N. M., Watanabe, K., Armstrong, N. J., Auro, K., Baumbach, C., Bonder, M. J., Buchwald, J., Fiorito, G., Ismail, K., Iurato, S., Joensuu, A., Karell, P., Kasela, S., Lahti, J., McRae, A. F., … Benjamin, D. J. (2017). An epigenome-wide association study meta-analysis of educational attainment. Molecular Psychiatry, 22(12), 1680–1690.
https://doi.org/10.1038/mp.2017.210
XXV. Kronenberg, F., & Schwaiger, J. P. (2017). Risk scores-the modern Oracle of Delphi? Kidney International, 91(3), 536–538.
https://doi.org/10.1016/j.kint.2016.11.022
XXVI. Li, D., Li, Y.-P., Li, Y.-X., Zhu, X.-H., Du, X.-G., Zhou, M., Li, W.-B., & Deng, H.-Y. (2018). Effect of Regulatory Network of Exosomes and microRNAs on Neurodegenerative Diseases. Chinese Medical Journal, 131(18), 2216–2225. https://doi.org/10.4103/0366-6999.240817
XXVII. Li, F., Wan, M., Zhang, B., Peng, Y., Zhou, Y., Pi, C., Xu, X., Ye, L., Zhou, X., & Zheng, L. (2018). Bivalent Histone Modifications and Development. Current Stem Cell Research & Therapy, 13(2), 83–90.
https://doi.org/10.2174/1574888X12666170123144743
XXVIII. Liao, Q., He, J., & Huang, K. (2022). Physical activities and risk of neurodegenerative diseases: A two-sample Mendelian randomization study. Frontiers in Aging Neuroscience, 14, 991140. https://doi.org/10.3389/fnagi.2022.991140
XXIX. Lin, W., Lin, Y.-K., Yang, F.-C., Chung, C.-H., Hu, J.-M., Tsao, C.-H., Weng, Z.-X., Ko, C.-A., & Chien, W.-C. (2023). Risk of neurodegenerative diseases in patients with sleep disorders: A nationwide population-based case-control study. Sleep Medicine, 107, 289–299.
https://doi.org/10.1016/j.sleep.2023.05.014
XXX. Lopez del Amo, J. M., Fink, U., Dasari, M., Grelle, G., Wanker, E. E., Bieschke, J., & Reif, B. (2012). Structural properties of EGCG-induced, nontoxic Alzheimer’s disease Aβ oligomers. Journal of Molecular Biology, 421(4–5), 517–524. https://doi.org/10.1016/j.jmb.2012.01.013
XXXI. McIntosh, J., Aresté, M. E., Brierley, J., Giugni, C., McGreevy, K. S., Cambra, F. J., Tibboel, D., Diaz, R., Zanobini, A., & European Children’s Hospitals Organisation. (2020). Safeguarding children’s right to health in hospital during COVID-19. The Lancet. Child & Adolescent Health, 4(11), 800–802. https://doi.org/10.1016/S2352-4642(20)30300-X
XXXII. Moallemi Rad, L., Sadoughi, M. M., Nicknam, A., Colagar, A. H., Hussen, B. M., Taheri, M., & Ghafouri-Fard, S. (2023). The impact of non-coding RNAs in the pathobiology of eye disorders. International Journal of Biological Macromolecules, 239, 124245.
https://doi.org/10.1016/j.ijbiomac.2023.124245
XXXIII. Nicastro, N., Assal, F., & Seeck, M. (2016). From here to epilepsy: The risk of seizure in patients with Alzheimer’s disease. Epileptic Disorders: International Epilepsy Journal with Videotape, 18(1), 1–12. https://doi.org/10.1684/epd.2016.0808
XXXIV. Ning, J., Huang, S.-Y., Chen, S.-D., Zhang, Y.-R., Huang, Y.-Y., & Yu, J.-T. (2022). Investigating Casual Associations Among Gut Microbiota, Metabolites, and Neurodegenerative Diseases: A Mendelian Randomization Study. Journal of Alzheimer’s Disease: JAD, 87(1), 211–222. https://doi.org/10.3233/JAD-215411
XXXV. Nozaki, I., Kato-Motozaki, Y., Ikeda, T., Tagami, A., Takahashi, K., Ishida, C., & Komai, K. (2014). Clinical features in association with neurodegenerative diseases and malignancies. European Neurology, 71(3–4), 99–105. https://doi.org/10.1159/000353995
XXXVI. Piket, E., Zheleznyakova, G. Y., Kular, L., & Jagodic, M. (2019). Small non-coding RNAs as important players, biomarkers and therapeutic targets in multiple sclerosis: A comprehensive overview. Journal of Autoimmunity, 101, 17–25. https://doi.org/10.1016/j.jaut.2019.04.002
XXXVII. Rasmi, Y., Shokati, A., Hassan, A., Aziz, S. G.-G., Bastani, S., Jalali, L., Moradi, F., & Alipour, S. (2023). The role of DNA methylation in progression of neurological disorders and neurodegenerative diseases as well as the prospect of using DNA methylation inhibitors as therapeutic agents for such disorders. IBRO Neuroscience Reports, 14, 28–37. https://doi.org/10.1016/j.ibneur.2022.12.002
XXXVIII. Saleh, O., Albakri, K., Altiti, A., Abutair, I., Shalan, S., Mohd, O. B., Negida, A., Mushtaq, G., & Kamal, M. A. (2023). The Role of Non-coding RNAs in Alzheimer’s Disease: Pathogenesis, Novel Biomarkers, and Potential Therapeutic Targets. CNS & Neurological Disorders Drug Targets. https://doi.org/10.2174/1871527322666230519113201
XXXIX. Saria, S., & Henry, K. E. (2020). Too Many Definitions of Sepsis: Can Machine Learning Leverage the Electronic Health Record to Increase Accuracy and Bring Consensus? Critical Care Medicine, 48(2), 137–141.
https://doi.org/10.1097/CCM.0000000000004144
XL. Shamaei, K., Sawicki, G. S., & Dollar, A. M. (2013). Estimation of quasi-stiffness and propulsive work of the human ankle in the stance phase of walking. PloS One, 8(3), e59935.
https://doi.org/10.1371/journal.pone.0059935
XLI. Silva, C. P., & Kamens, H. M. (2021). Cigarette smoke-induced alterations in blood: A review of research on DNA methylation and gene expression. Experimental and Clinical Psychopharmacology, 29(1), 116–135.
https://doi.org/10.1037/pha0000382
XLII. Tcherkez, G. (2021). How atmospheric oxygen is captured by RuBisCo. Nature Reviews. Molecular Cell Biology, 22(5), 304.
https://doi.org/10.1038/s41580-021-00344-y
XLIII. Tsai, C. W., Tsai, C. F., Lin, K. H., Chen, W. J., Lin, M. S., Hsieh, C. C., & Lin, C. C. (2020). An investigation of the correlation between the S-glutathionylated GAPDH levels in blood and Alzheimer’s disease progression. PloS One, 15(5), e0233289. https://doi.org/10.1371/journal.pone.0233289
XLIV. Wei, H., Zhang, J., Li, H., Ren, H., Hao, X., & Huang, Y. (2014). GP73, a new marker for diagnosing HBV-ACLF in population with chronic HBV infections. Diagnostic Microbiology and Infectious Disease, 79(1), 19–24.
https://doi.org/10.1016/j.diagmicrobio.2014.01.008
XLV. Wong, L. M., Phoon, L. Q., & Wei, L. K. (2021). Epigenetics Modifications in Large-Artery Atherosclerosis: A Systematic Review. Journal of Stroke and Cerebrovascular Diseases: The Official Journal of National Stroke Association, 30(12), 106033. https://doi.org/10.1016/j.jstrokecerebrovasdis.2021.106033
XLVI. Wu, P.-F., Lu, H., Zhou, X., Liang, X., Li, R., Zhang, W., Li, D., & Xia, K. (2021). Assessment of causal effects of physical activity on neurodegenerative diseases: A Mendelian randomization study. Journal of Sport and Health Science, 10(4), 454–461.
https://doi.org/10.1016/j.jshs.2021.01.008
XLVII. Yang, T., Xiao, Y., Cheng, Y., Huang, J., Wei, Q., Li, C., & Shang, H. (2023). Epigenetic clocks in neurodegenerative diseases: A systematic review. Journal of Neurology, Neurosurgery, and Psychiatry, jnnp-2022-330931.
https://doi.org/10.1136/jnnp-2022-330931
XLVIII. Yaribeygi, H., Panahi, Y., Javadi, B., & Sahebkar, A. (2018). The Underlying Role of Oxidative Stress in Neurodegeneration: A Mechanistic Review. CNS & Neurological Disorders Drug Targets, 17(3), 207–215. https://doi.org/10.2174/1871527317666180425122557