Cardioprotective Effects of SGLT2 Inhibitors in Diabetic Patients with Cardiovascular Disease

Main Article Content

Omar González Rico
Ulises Solis Bermudez
David Alejandro Rodriguez Herrera
Matzari Fabiola Ocampo Alvarez
Jose Ruben Romero Castellares
Itzel Berenice Cruz Pineda
Lizette Alicia Campillo Pérez
María José López Ruelas
Paulina Gutiérrez Valladares

Abstract

Type 2 diabetes is a chronic and multifactorial disease associated with a twofold increase in the incidence of numerous cardiovascular and renal diseases, which are a significant health limitation for patients with diabetes. Throughout the years, cardiovascular diseases have marked a significant health burden in these patients. Many studies have shown that Sodium-glucose cotransporter 2 (SGLT2) inhibitors reduce cardiovascular mortality in patients with diabetes mellitus, by inhibiting cardiomyocyte apoptosis. Patients with diabetes are at a higher mortality risk after their first event of myocardial infarction than those without diabetes. The keystone in the therapy of diabetic patients is significantly linked to the prevention of cardiovascular events.


The high prevalence of cardiovascular and renal disease in patients with diabetes, as well as suboptimal glycemic controls and the significance of cardiovascular and renal risk reduction in type 2 diabetes, suggest that SGLT2 inhibitors have a significant clinical advantage, enhancing not just a better glycemic control, but improving cardiovascular and renal outcomes.

Article Details

How to Cite
Omar González Rico, Ulises Solis Bermudez, David Alejandro Rodriguez Herrera, Matzari Fabiola Ocampo Alvarez, Jose Ruben Romero Castellares, Itzel Berenice Cruz Pineda, Lizette Alicia Campillo Pérez, María José López Ruelas, & Paulina Gutiérrez Valladares. (2024). Cardioprotective Effects of SGLT2 Inhibitors in Diabetic Patients with Cardiovascular Disease. International Journal of Medical Science and Clinical Research Studies, 4(06), 1093–1096. https://doi.org/10.47191/ijmscrs/v4-i06-19
Section
Articles

References

I. Martín-Timón, I., Sevillano-Collantes, C., Segura-Galindo, A., & del Cañizo-Gómez, F. J. (2014). Type 2 diabetes and cardiovascular disease: have all risk factors the same strength?. World journal of diabetes, 5(4), 444.

II. Alemi H, Khaloo P, Mansournia MA, Rabizadeh S, Salehi SS, Mirmiranpour H, et al. Pulse pressure and diabetes treatments: Blood pressure and pulse pressure difference among glucose lowering modality groups in type 2 diabetes. Medicine (Baltimore). 2018;97(6):e9791. doi: 10.1097/MD.0000000000009791.

III. Bao, Y., Zhao, T., Wang, X., Qiu, Y., Su, M., Jia, W., & Jia, W. (2009). Metabonomic variations in the drug-treated type 2 diabetes mellitus patients and healthy volunteers. Journal of Proteome Research, 8(4), 1623-1630.

IV. Wu, J. H., Foote, C., Blomster, J., Toyama, T., Perkovic, V., Sundström, J., & Neal, B. (2016). Effects of sodium-glucose cotransporter-2 inhibitors on cardiovascular events, death, and major safety outcomes in adults with type 2 diabetes: a systematic review and meta-analysis. The lancet Diabetes & endocrinology, 4(5), 411-419.

V. Muskiet, M. H., van Raalte, D. H., van Bommel, E. J., Smits, M. M., & Tonneijck, L. (2015). Understanding Empa-Reg outcome. The lancet Diabetes & endocrinology, 3(12), 928-929.

VI. Li, L., Konishi, Y., Morikawa, T., Zhang, Y., Kitabayashi, C., Kobara, H., ... & Nishiyama, A. (2018). Effect of a SGLT2 inhibitor on the systemic and intrarenal renin–angiotensin system in subtotally nephrectomized rats. Journal of pharmacological sciences, 137(2), 220-223.

VII. Raz, I., Mosenzon, O., Bonaca, M. P., Cahn, A., Kato, E. T., Silverman, M. G., ... & Wiviott, S. D. (2018). DECLARE‐TIMI 58: participants’ baseline characteristics. Diabetes, Obesity and Metabolism, 20(5), 1102-1110.

VIII. Ho, K. (2023). Myocardial Ketone Metabolism in Heart Failure.

IX. Jiang K, Xu Y, Wang D, Chen F, Tu Z, Qian J, Xu S, Xu Y, Hwa J, Li J, Shang H, Xiang Y. Cardioprotective mechanism of SGLT2 inhibitor against myocardial infarction is through reduction of autosis. Protein Cell. 2022 May;13(5)336-359. doi: 10.1007/s13238-020-00809-4. Epub 2021 Jan 8. PMID: 33417139; PMCID: PMC9008115

Most read articles by the same author(s)