Recent Advances in InVitro Maturation (IVM): A Systematic Literature Review
Main Article Content
Abstract
In Vitro Maturation (IVM) is one of the Assisted Reproductive Technologies (ART) that involves the retrieval of immature oocytes from antral follicles in the ovaries, either in a non-stimulated or minimally stimulated state. IVM has drawn the attention of fertility specialists due to its reliability, cost-effectiveness, low risk of Ovarian Hyperstimulation Syndrome (OHSS), and acceptable clinical pregnancy rates
Objective: Understanding the Process and Factors Influencing In Vitro Maturation of Human Oocytes (IVM)
Method: The research methodology employed in this study is the Systematic Literature Review (SLR) method. Data was collected by documenting all articles based on predetermined inclusion and exclusion criteria. A total of 10 national and international journal articles were utilized for this study, obtained from databases such as Google Scholar, PubMed, and Science Direct, using specific keywords including "In Vitro Maturation" and "human oocyte maturation". The literature search and study selection process followed the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guidelines.
Results: There were no instances of moderate-severe OHSS (ovarian hyperstimulation syndrome) in the IVM group. The fertilization rate in the group receiving growth hormone (GH) was 12.8% higher compared to the control group. Additionally, the blastocyst rate in the GH group was 9.5% higher than that of the control group. Treatment with a concentration of 50 µmol/L ALA (alpha-lipoic acid) significantly accelerated oocyte maturation. It resulted in a significantly higher mitochondrial DNA (mtDNA) copy number in mature oocytes compared to the control group (0 µmol/L ALA). The highest maturation rates were observed in human umbilical cord mesenchymal cells (hUCM) in the in vitro maturation (fIVM) of germinal vesicle (GV) oocytes, while the lowest maturation rates were observed using alpha-Minimum Essential Medium (α-MEM) in the in vitro maturation (vIVM) of GV oocytes. When AMH (anti-Müllerian hormone) was added to the IVM medium, a maturation rate of 100% was achieved in mature oocytes. The inclusion of 50 mmol/L CoQ10 in IVM media was found to reduce the level of oocyte aneuploidy by nearly 50%. The formation rate of metaphase II (MII) stage oocytes was higher in culture medium containing 1.0 mm resveratrol compared to the control group. Subsequently, a total of eight cleavage-stage embryos were frozen after intracytoplasmic sperm injection (ICSI). One year later, when the patient returned for the transfer of cryopreserved embryos, two embryos were thawed and transferred into the uterus. The patient successfully became pregnant, and the twin pregnancy progressed without complications, delivering two healthy full-term baby boys.
Conclusion: The occurrence of OHSS was not observed in any of the IVM intervention groups. Supplementation with growth hormone (GH), alpha-lipoic acid (ALA), umbilical cord-derived mesenchymal stem cells (CM-MSC), anti-Müllerian hormone (AMH), and resveratrol in the culture media each demonstrated a significant improvement in human oocyte maturation. Furthermore, resveratrol and coenzyme Q10 were effective in addressing abnormal spindle morphology, irregular chromosome arrangement, and high postmeiotic aneuploidy. It is worth noting that IVM is not exclusively limited to patients with polycystic ovary syndrome (PCOS), as it can yield satisfactory outcomes in patients with autoimmune premature ovarian insufficiency (POI).
Article Details
This work is licensed under a Creative Commons Attribution 4.0 International License.
References
I. Akbari, H., Eftekhar Vaghefi, S. H., Shahedi, A., Habibzadeh, V., Mirshekari, T. R., Ganjizadegan, A., Mollaei, H., Ahmadi, M., & Nematollahi-Mahani, S. N. (2017). Mesenchymal stem cell-conditioned medium modulates apoptotic and stress-related gene expression, ameliorates maturation and allows for the development of immature human oocytes after artificial activation. Genes, 8(12), 4–8. https://doi.org/10.3390/genes8120371
II. Akdemir, Y., Donmez Cakil, Y., Selam, B., Sitar, M. E., & Cincik, M. (2022). Rescue IVM of Denuded GV- and MI-Stage Oocytes of Premenopausal Rats with Oncostatin M, Insulin-like Growth Factor I, and Growth Hormone. Life, 12(8). https://doi.org/10.3390/life12081247
III. Bedenk, J., Režen, T., Ramuta, T. Ž., Jančar, N., Bokal, E. V., Geršak, K., & Klun, I. V. (2022). Recombinant anti ‑ Müllerian hormone in the maturation medium improves the in vitro maturation of human immature ( GV ) oocytes after controlled ovarian hormonal stimulation. Reproductive Biology and Endocrinology, 1–11.
https://doi.org/10.1186/s12958-022-00895-5
IV. Begum, M. R. (1970). Assisted Reproductive Technology: Techniques and Limitations. Journal of Bangladesh College of Physicians and Surgeons, 26(3), 135–141.
https://doi.org/10.3329/jbcps.v26i3.4197
V. Bijttebier, J., Van Soom, A., Meyer, E., Mateusen, B., & Maes, D. (2008). Preovulatory follicular fluid during in vitro maturation decreases polyspermic fertilization of cumulus-intact porcine oocytes. In vitro maturation of porcine oocytes. Theriogenology, 70(4), 715–724. https://doi.org/10.1016/j.theriogenology.2008.04.046
VI. Boni, R., Cuomo, A., & Tosti, E. (2002). Developmental potential in bovine oocytes is related to cumulus-oocyte complex grade, calcium current activity, and calcium stores. Biology of Reproduction, 66(3), 836–842. https://doi.org/10.1095/biolreprod66.3.836
VII. Braga, D. P. de A. F., Figueira, R. de C. S., Rodrigues, D., Madaschi, C., Pasqualotto, F. F., Iaconelli, A., & Borges, E. (2008). Prognostic value of meiotic spindle imaging on fertilization rate and embryo development in in vitro-matured human oocytes. Fertility and Sterility, 90(2), 429–433. https://doi.org/10.1016/j.fertnstert.2007.06.088
VIII. Briggs, J. (2017). Checklist for Quasi-Experimental Studies. The Joanna Briggs Institute, 1–6. http://joannabriggs.org/assets/docs/critical-appraisal-tools/JBI_Quasi-Experimental_Appraisal_Tool2017.pdf
IX. Buckett, W. M., Chian, R. C., Dean, N. L., Sylvestre, C., Holzer, H. E. G., & Tan, S. L. (2008). Pregnancy loss in pregnancies conceived after in vitro oocyte maturation, conventional in vitro fertilization, and intracytoplasmic sperm injection. Fertility and Sterility, 90(3), 546–550.
https://doi.org/10.1016/j.fertnstert.2007.06.107
X. Caillaud, M., Dell’Aquila, M. E., De Santis, T., Nicassio, M., Lacalandra, G. M., Goudet, G., & Gérard, N. (2008). In vitro equine oocyte maturation in pure follicular fluid plus interleukin-1 and fertilization following ICSI. Animal Reproduction Science, 106(3–4), 431–439.
https://doi.org/10.1016/j.anireprosci.2007.06.005
XI. Cha, K. Y., & Chian, R. C. (1998). Maturation in vitro of immature human oocytes for clinical use. Human Reproduction Update, 4(2), 103–120. https://doi.org/10.1093/humupd/4.2.103
XII. Chian, R. C., Gilbert, L., Huang, J. Y. J., Demirtas, E., Holzer, H., Benjamin, A., Buckett, W. M., Tulandi, T., & Tan, S. L. (2009). Live birth after vitrification of in vitro matured human oocytes. Fertility and Sterility, 91(2), 372–376. https://doi.org/10.1016/j.fertnstert.2007.11.088
XIII. Cobo, A. C., Requena, A., Neuspiller, F., Aragonés, M., Mercader, A., Navarro, J., Simon, C., Remohi, J., & Pellicer, A. (1999). Maturation in vitro of human oocytes from unstimulated cycles: Selection of the optimal day for ovum retrieval based on follicular size. Human Reproduction, 14(7), 1864–1868. https://doi.org/10.1093/humrep/14.7.1864
XIV. Esteves, S. C., Humaidan, P., Roque, M., & Agarwal, A. (2019). Female infertility and assisted reproductive technology. Panminerva Medica, 61(1), 1–2. https://doi.org/10.23736/S0031-0808.18.03553-X
XV. Gilula, N. B., Epstein, M. L., & Beers, W. H. (1978). Cell-to-cell communication and ovulation. A study of the cumulus-oocyte complex. Journal of Cell Biology, 78(1), 58–75. https://doi.org/10.1083/jcb.78.1.58
XVI. Gordon, I. (1994). Oocyte Recovery and Maturation in Laboratory Production of Cattle Embryos. Cab International.
XVII. Haryadi, D., Sadewa, A. H., Mubarika, S., & Dasuki, D. (2019). The potential application of conditioned media-mesenchymal stem cells on human oocyte maturation in assisted reproductive technology : A quasi-experimental based-study at Dr . Sardjito General Hospital , Yogyakarta , Indonesia. 8(3), 561–568.
https://doi.org/10.15562/bmj.v8i3.1504
XVIII. Hatırnaz, Ş., Ata, B., Hatırnaz, E. S., Dahan, M. H., Tannus, S., Tan, J., & Tan, S. L. (2018). Oocyte in vitro maturation: A sytematic review. Turkish Journal of Obstetrics and Gynecology, 15(2), 112–125. https://doi.org/10.4274/tjod.23911
XIX. Ho, V. N. A., Braam, S. C., Pham, T. D., Mol, B. W., & Vuong, L. N. (2019). The effectiveness and safety of in vitro maturation of oocytes versus in vitro fertilization in women with a high antral follicle count. Human Reproduction, 34(6), 1055–1064. https://doi.org/10.1093/humrep/dez060
XX. Hu, J. J., Li, J. X., Wang, X. L., Guan, Y. C., & Sun, L. J. (2019). Preliminary Research on the Effect of Linolenic Acid on Human Oocyte Maturation. 3(1). https://doi.org/10.4103/2096-2924.255988
XXI. Irez, T., Ercan, S., Ciraci, E., Aksoyer, S. B., Toprak, M. S., & Dayioglu, N. (2021). Does the Apoptosis Value of Cumulus Cells Play a Role in Rescue Oocyte in Vitro Maturation ? 27(3), 234–241. https://doi.org/10.21613/GORM.2020.1087
XXII. Lacham-Kaplan, O., & Trounson, A. (2008). Reduced developmental competence of immature, in-vitro matured and postovulatory aged mouse oocytes following IVF and ICSI. Reproductive Biology and Endocrinology, 6, 1–13. https://doi.org/10.1186/1477-7827-6-58
XXIII. Lanzendorf, S. E. (2006). Developmental potential of in vitro- and in vivo-matured human oocytes collected from stimulated and unstimulated ovaries. Fertility and Sterility, 85(4), 836–837. https://doi.org/10.1016/j.fertnstert.2005.09.057
XXIV. Li, J., Chen, Q., Wang, J., Huang, G., & Ye, H. (2020). Does growth hormone supplementation improve oocyte competence and IVF outcomes in patients with poor embryonic development ? A randomized controlled trial. 1–10.
XXV. Li, Y., Liu, H., Yu, Q., Liu, H., & Huang, T. (2019). Growth Hormone Promotes in vitro Maturation of Human Oocytes. 10(July), 1–8.
https://doi.org/10.3389/fendo.2019.00485
XXVI. Li, Yuan, Feng, H. L., Cao, Y. J., Zheng, G. J., Yang, Y., Mullen, S., Critser, J. K., & Chen, Z. J. (2006). Confocal microscopic analysis of the spindle and chromosome configurations of human oocytes matured in vitro. Fertility and Sterility, 85(4), 827–832. https://doi.org/10.1016/j.fertnstert.2005.06.064
XXVII. Liu, M., Ph, D., Sun, A., Zhao, S., Ph, D., & Liu, H. (2018). Resveratrol improves in vitro maturation of oocytes in aged mice and humans. Fertility and Sterility, 109(5), 900–907.
https://doi.org/10.1016/j.fertnstert.2018.01.020
XXVIII. Lucidi, P., Bernabò, N., Turriani, M., Barboni, B., & Mattioli, M. (2003). Cumulus cells steroidogenesis is influenced by the degree of oocyte maturation. Reproductive Biology and Endocrinology, 1, 1–9. https://doi.org/10.1186/1477-7827-1-45
XXIX. M, G. V., Khanbabaee, R., Shariati, M., & Ma, E. (2020). Improving the Effects of Omega-3 Fatty Acid on the In Vitro Maturation of Oocytes. 153–161.
XXX. Ma, L., Cai, L., Ph, D., Hu, M., Wang, J., Ph, D., & Xie, J. (n.d.). Coenzyme Q10 supplementation of human oocyte in vitro maturation reduces postmeiotic aneuploidies. 5, 331–337. https://doi.org/10.1016/j.fertnstert.2020.04.002
XXXI. Marei, W. F. A., De Bie, J., Mohey-Elsaeed, O., Wydooghe, E., Bols, P. E. J., & Leroy, J. L. M. R. (2017). Alpha-linolenic acid protects the developmental capacity of bovine cumulus-oocyte complexes matured under lipotoxic conditions in vitro. Biology of Reproduction, 96(6), 1181–1196. https://doi.org/10.1093/biolre/iox046
XXXII. Moola, Z, M., C, T., E, A., K, S., R, S., M, C., R, Q., P, M., K, L., & P-F, M. (2017). Checklist for analytical cross sectional studies. Joanna Briggs Institute Reviewer’s Manual, 1–7.
XXXIII. Mtango, N. ., Varisanga, M. ., & Suzuki, T. (2002). Effects of Growth Hormone and Growth Factors on the Improvement of Culture Conditions of In Vitro Produced Bovine Embryos. Pakistan Journal of Biological Sciences, 5(5).
XXXIV. Nakagawa, S., Yoneda, A., Hayakawa, K., & Watanabe, T. (2008). Improvement in the in vitro maturation rate of porcine oocytes vitrified at the germinal vesicle stage by treatment with a mitochondrial permeability transition inhibitor. Cryobiology, 57(3), 269–275.
https://doi.org/10.1016/j.cryobiol.2008.09.008
XXXV. Nichols, S. M., Gierbolini, L., Gonzalez-Martinez, J. A., & Bavister, B. D. (2010). Effects of in vitro maturation and age on oocyte quality in the rhesus macaque Macaca mulatta. Fertility and Sterility, 93(5), 1591–1600.
https://doi.org/10.1016/j.fertnstert.2008.12.141
XXXVI. Orisaka, M., Tajima, K., Tsang, B. K., & Kotsuji, F. (2009). Oocyte-granulosa-theca cell interactions during preantral follicular development. Journal of Ovarian Research, 2(1), 1–7.
https://doi.org/10.1186/1757-2215-2-9
XXXVII. Paul, J., & Criado, A. R. (2020). The art of writing literature review: What do we know and what do we need to know? International Business Review, 29(4), 101717. https://doi.org/10.1016/j.ibusrev.2020.101717
XXXVIII. Ph, D., Jacquesson, L., Sifer, C., & Pharm, D. (2020). In vitro maturation of oocytes for preserving fertility in autoimmune premature ovarian insuf fi ciency. 114(4).
https://doi.org/10.1016/j.fertnstert.2020.04.049
XXXIX. Pour, F. K., Dari, M. A. G., Ramazii, M., Keivan, M., & Farzaneh, M. F. (2023). Mesenchymal Stem Cells-Conditioned Medium; An Effective Cell-Free Therapeutic Option for in Vitro Maturation of Oocytes. Current Stem Cell Research & Therapy. https://doi.org/10.2174/1574888X18666221219163753
XL. Ramazanzadeh, F., Aksa, M. M., Amanpour, S., Ph, D., Bagheri, M., Sc, M., Jafarabadi, M., & Bojnordi, M. N. (2007). In Vitro Oocyte Maturation in Polycystic Ovarian Syndrome Patients. Fertility and Sterility, 1(3), 131–134.
XLI. Sutton-McDowall, M. L., Gilchrist, R. B., & Thompson, J. G. (2010). The pivotal role of glucose metabolism in determining oocyte developmental competence. Reproduction, 139(4), 685–695. https://doi.org/10.1530/REP-09-0345
XLII. Taylor, H. S., & Pal, Lubna; Seli, E. (1999). NoSperoff’s Clinical Gynecologic Endocrinology and Infertility 6th Edition Title (6th ed.). Lippincott Williams & Wilkins.
XLIII. Totey, S. M., Pawshe, C. H., & Singh, G. P. (1993). In vitro maturation and fertilization of buffalo oocytes (Bubalus bubalis): Effects of media, hormones and sera. Theriogenology, 39(5), 1153–1171.
https://doi.org/10.1016/0093-691X(93)90014-V
XLIV. Triandini, E., Jayanatha, S., Indrawan, A., Werla Putra, G., & Iswara, B. (2019). Metode Systematic Literature Review untuk Identifikasi Platform dan Metode Pengembangan Sistem Informasi di Indonesia. Indonesian Journal of Information Systems, 1(2), 63.
https://doi.org/10.24002/ijis.v1i2.1916
XLV. Vander Borght, M., & Wyns, C. (2018). Fertility and infertility: Definition and epidemiology. Clinical Biochemistry, 62(March), 2–10.
https://doi.org/10.1016/j.clinbiochem.2018.03.012
XLVI. Visser, J. A., de Jong, F. H., Laven, J. S. E., & Themmen, A. P. N. (2006). Anti-Müllerian hormone: A new marker for ovarian function. Reproduction, 131(1), 1–9.
https://doi.org/10.1530/rep.1.00529
XLVII. Wang, N., Le, F., Zhan, Q.-T., Li, L., Dong, M.-Y., Ding, G.-L., Xu, C.-M., Jiang, S.-W., Huang, H.-F., & Jin, F. (2010). Effects of In Vitro Maturation on Histone Acetylation in Metaphase II Oocytes and Early Cleavage Embryos. Obstetrics and Gynecology International, 2010, 1–9.
https://doi.org/10.1155/2010/989278
XLVIII. Yang, M. Y., Cushman, R. A., & Fortune, J. E. (2017). Anti-Müllerian hormone inhibits activation and growth of bovine ovarian follicles in vitro and is localized to growing follicles. Molecular Human Reproduction, 23(5), 282–291.
https://doi.org/10.1093/molehr/gax010
XLIX. Yen, S. S. ., Strauss III, J. F., & Barbieri, R. L. (2019). Yen & Jaffe’s Reproductive Endocrinology : Physiology, Pathophysiology, and Clinical Management Eighth edition (8th ed.). Elsevier.
L. Zabihi, A., Shabankareh, H. K., Hajarian, H., & Foroutanifar, S. (2019). Resveratrol addition to in vitro maturation and in vitro culture media enhances developmental competence of sheep embryos.
LI. Zhang, M., ShiYang, X., Zhang, Y., Miao, Y., Chen, Y., Cui, Z., & Xiong, B. (2019). Coenzyme Q10 ameliorates the quality of postovulatory aged oocytes by suppressing DNA damage and apoptosis. Free Radical Biology and Medicine, 143(August), 84–94. https://doi.org/10.1016/j.freeradbiomed.2019.08.002
LII. Zhao, J. Z., Zhou, W., Zhang, W., Ge, H. S., Huang, X. F., & Lin, J. J. (2009). In vitro maturation and fertilization of oocytes from unstimulated ovaries in infertile women with polycystic ovary syndrome. Fertility and Sterility, 91(6), 2568–2571. https://doi.org/10.1016/j.fertnstert.2008.03.059
LIII. Zheng, X., Guo, W., Zeng, L., Zheng, D., Yang, S., Xu, Y., Wang, L., Wang, R., Mol, B. W., Li, R., & Qiao, J. (2022). In vitro maturation without gonadotropins versus in vitro fertilization with hyperstimulation in women with polycystic ovary syndrome : a non-inferiority randomized controlled trial. 37(2), 242–253.