Potential Use of Cell Free Fetal DNA at 13 Short Tandem Repeats Loci for Noninvasive Prenatal Paternity Test

Main Article Content

Citra Manela
Rika Susanti
Taufik Hidayat

Abstract

Background : Prenatal paternity test is mostly performed by using Amniocentesis or Chorionic Villus Sampling (CVS) methods. However, these methods require invasive procedures, which are potentially harmful for both the mother and the fetus. Currently, the invention of of Cell-Free Fetal DNA (cffDNA) has offered the opportunity of performing prenatal paternity test non-invasively.


Materials and Methods : This study is a cross sectional descriptive study to detect cell free fetal DNA at 13 STR loci and at amelogenin gene to evaluate fetus gender, which will be compared to the baby gender afterbirth. Healthy third semester pregnant women were included as participants. Inform consent for both the mother and the biological father has been provided.


Result : Four participants has been evaluated. In this study, in all participants, we found the presence of cffDNA in almost all of the STR loci. Some loci cannot be detected due to the small amount of cffDNA in the loci. All fetus genders detected by cffDNA in the amelogenin gene macthed the gender of the four babies afterbirth.


Conclusion : The use of Cell-Free Fetal DNA (cffDNA) is a potential non-invasive methods in prenatal paternity test. Additionally, the ability of the method to evaluate fetus gender has been suggested.

Article Details

How to Cite
Citra Manela, Rika Susanti, & Taufik Hidayat. (2021). Potential Use of Cell Free Fetal DNA at 13 Short Tandem Repeats Loci for Noninvasive Prenatal Paternity Test. International Journal of Medical Science and Clinical Research Studies, 1(04), 37–42. https://doi.org/10.47191/ijmscrs/v1-i4-01
Section
Articles

References

Yudianto, Ahmad. Cell free fetal DNA metode non invasive dalam pemeriksaan identifikasi. Surabaya : Scopindo; 2019.

Hromadnikova, Extracellular nucleic acids in maternal circulation as potential biomarkers for placental insufficiency, DNA Cell Biol. 31 (2012) 1221–1232. doi:10.1089/dna.2011.1530

Goodwin W, Linacre A, Hadi S. An Introduction to Forensic Genetics. West Sussex: John Wiley&Sons Ltd; 2007

Syukriani Yoni. DNA Forensik. Bandung : Sagung Seto; 2012.

E.R. Norwitz, B. Levy, Noninvasive prenatal testing: the future is now, Rev. Obstet Gynecol. 6 (2013) 48–62.

F. Tara, M. Lotfalizadeh, S. Moeindarbari, The effect of diagnostic amniocentesis and its complications on early spontaneous abortion, Electron. Physician. 8 (2016) 2787–2792. doi:10.19082/2787.

M. Theodora, A. Antsaklis, P. Antsaklis, K. Blanas, G. Daskalakis, M. Sindos, S. Mesogitis, N. Papantoniou, Fetal loss following second trimester amniocentesis. Who is at greater risk? How to counsel pregnant women?, J. Matern. Fetal. Neonatal Med. 29 (2016) 590–595. doi:10.3109/14767058.2015.1012061.

H.V. Firth, P.A. Boyd, P. Chamberlain, I.Z. MacKenzie, R.H. Lindenbaum, S.M. Huson, Severe limb abnormalities after chorion villus sampling at 56-66 days’ gestation, Lancet (London, England). 337 (1991) 762–763.

M. Cederholm, B. Haglund, O. Axelsson, Infant morbidity following amniocentesis and chorionic villus sampling for prenatal karyotyping, BJOG. 112 (2005) 394–402. doi:10.1111/j.1471-0528.2005.00413.x.

Z. Alfirevic, K. Sundberg, S. Brigham, Amniocentesis and chorionic villus sampling forprenatal diagnosis, Cochrane Database Syst. Rev. (2003) CD003252.doi:10.1002/14651858.CD003252.

Henningsen K. On the application of blood group testing to cases of disputed paternity in Denmark. Acta Med Leg Soc (Liege). 1956;9:95-104.

A.G. Vaiopoulos, K.C. Athanasoula, N Papantoniou, A. Kolialexi, Advances in Non-invasive Prenatal Diagnosis, In Vivo. 27 (2013) 165–170.

J.M. Butler, Genetics and genomics of core short tandem repeat loci used in human identity testing, J. Forensic Sci. 51 (2006) 253–265. doi:10.1111/j.1556-4029.2006.00046.x.

K. Yoshida, K. Yayama, A. Hatanaka, K. Tamaki, Efficacy of extended kinship analyses utilizing commercial STR kit in establishing personal identification, Leg. Med. (Tokyo). 13 (2011) 12–15. doi:10.1016/j.legalmed.2010.09.001.

K. Tamaki, R.H. Kaszynski, Q.H. Yuan, K. Yoshida, T. Okuno, T. Tsuruyama, Likelihood evaluation using 15 common short tandem repeat loci: a practical and simulated approach to establishing personal identification via sibling/parental assessments, Transfusion. 49 (2009) 578–584. doi:10.1111/j.1537-2995.2008.02024.x.

J. Wagner, S. Dzijan, D. Marjanovic, G. Lauc, Non-invasive prenatal paternity testing from maternal blood, Int. J. Legal Med. 123 (2009) 75–79. doi:10.1007/s00414-008-0292-9.

Sosiawan, A., Raharjo, D., Nuraini, I. et al. Detection of short tandem repeats at 5 loci and amelogenin with cell-free fetal DNA as a specimen in the development of prenatal paternity diagnostic tests. Egypt J Forensic Sci 8, 15 (2018). https://doi.org/10.1186/s41935-018-0047-9

H. Jiang et al. Noninvasive Prenatal Paternity Testing (NIPAT) through Maternal Plasma DNA Sequencing: A Pilot Study, PLoS One. 11 (2016): e0159385. doi:10.1371/journal.pone.0159385.

G.B. Barra, T.H. Santa Rita, C.F. Chianca, L.F.R. Velasco, C.F. de Sousa, L.F.A. Nery, S.S.S. Costa, Fetal male lineage determination by analysis of Y-chromosome STR haplotype in maternal plasma, Forensic Sci. Int. Genet. 15 (2015) 105–110. doi:10.1016/j.fsigen.2014.11.006.

X. Ou, J. Gao, Y. Chen, Y. Gao, D. Qu, H. Sun, Detecting hypermethylated fetal RASSF1A sequences in maternal plasma: implications for noninvasive paternity testing in pregnancy, Transfusion. 53 (2013) 1856–1858. doi:10.1111/trf.12246.

J.A. Tynan, P. Mahboubi, L.L. Cagasan, D. Van Den Boom, M. Ehrich, P. Oeth, Restriction Enzyme–Mediated Enhanced Detection of Circulating Cell-Free Fetal DNA in Maternal Plasma, J Mol Diagn. 13 (2011) 382–389. doi:10.1016/j.jmoldx.2011.02.001.

D. Yang et al, Noninvasive fetal genotyping of paternally inherited alleles using targeted massively parallel sequencing in parentage testing cases, Transfusion. 57 (2017) 1505-1514. doi:10.1111/trf.14077.

A. Ryan, J. Baner, Z. Demko, M. Hill, S. Sigurjonsson, M.L. Baird, M. Rabinowitz, Informatics-based, highly accurate, noninvasive prenatal paternity testing, Genet Med. 15 (2013) 473–477. doi:10.1038/gim.2012.155.

T.J. Legler et al, Workshop report on the extraction of foetal DNA from maternal plasma, Prenat Diagn. 27 (2007) 824–829. doi: 10.1002/pd.1783.

F.B. Clausen, G.R. Krog, K. Rieneck, M.H. Dziegiel, Improvement in fetal DNA extraction from maternal plasma. Evaluation of the NucliSens Magnetic Extraction system and the QIAamp DSP Virus Kit in comparison with the QIAamp DNA Blood Mini Kit, Prenat Diagn. 27 (2007) 6–10. doi: 10.1002/pd.1605.

G. Repiská, T. Sedláčková, T. Szemes, P. Celec, G. Minárik, Selection of the optimal manual method of cell free fetal DNA isolation from maternal plasma, Clin Chem Lab Med. 51 (2013) 1185–1189. doi:10.1515/cclm-2012-0418.

A.S. Devonshire, A.S. Whale, A. Gutteridge, G. Jones, S. Cowen, C.A. Foy, J.F. Huggett, Towards standardisation of cell-free DNA measurement in plasma: controls for extraction efficiency, fragment size bias and quantification, Anal Bioanal Chem. 406 (2014) 6499–6512. doi:10.1007/s00216-014-7835-3.