An Overview of Biofilm as a Virulence Factor for Bacteria to Survive in the Harsh Environment

Main Article Content

Thekra Sideeq Al-Tayawi
Esraa M. Adel
Farah H. Omer

Abstract

Microbial biofilms are collections of grouped microbial cells enmeshed in an extracellular polymeric substances (EPS) matrix that they have self-assembled. Biofilms are resistant to harsh environments and can serve as "protective clothing" for bacteria by shielding them from ultraviolet (UV) radiation, extreme temperatures, pH ranges, high salinity, high pressure, inadequate nutrition, antibiotics, etc. Research on biofilms in recent years has mostly concentrated on biofilm-associated illnesses and methods for eradicating microbial biofilms.

Article Details

How to Cite
Thekra Sideeq Al-Tayawi, Esraa M. Adel, & Farah H. Omer. (2023). An Overview of Biofilm as a Virulence Factor for Bacteria to Survive in the Harsh Environment. International Journal of Medical Science and Clinical Research Studies, 3(06), 1188–1197. https://doi.org/10.47191/ijmscrs/v3-i6-30
Section
Articles

References

I. Vasudevan R. Biofilms: microbial cities of scientific significance. J Microbiol Exp. 2014;1(3):84-98.

DOI: 10.15406/jmen. 2014.01.00014 .

II. Chatterjee N., Walker G.C. Mechanisms of DNA damage, repair, and mutagenesis. Environ. Mol. Mutagen. 2017;58:235–263.

doi: 10.1002/em.22087.

III. reinert R., Volkmer B., Henning S., Breitbart E.W., Greulich K.O., Cardoso M.C., Rapp A. UVA-induced DNA double-strand breaks result from the repair of clustered oxidative DNA damages. Nucleic Acids Res. 2012;40:10263–10273.

doi: 10.1093/nar/gks824.

IV. Weiss R.S., Graindorge D., Martineau S., Machon C., Arnoux P., Guitton J., Francesconi S., Frochot C., Sage E., Girard P.M. Singlet oxygen-mediated oxidation during UVA radiation alters the dynamic of genomic DNA replication. PLoS ONE. 2015;10:e0140645.

V. Sorg O., Tran C., Carraux P., Grand D., Hugin A., Didierjean L., Saurat J.H. Spectral properties of topical retinoids prevent DNA damage and apoptosis after acute UV-B exposure in hairless mice. Photochem. Photobiol. 2005;81:830–836. doi: 10.1562/2004-10-01-RA-333R1.1.

VI. Kiefer J. Effects of ultraviolet radiation on DNA. In: Obe G., Natarajan A.T., editors. Chromosomal Alterations. Springer; Berlin/Heidelberg, Germany: 2007. pp. 39–53.

VII. Elasri M.O., Miller R.V. A Pseudomonas aeruginosa biosensor responds to exposure to ultraviolet radiation. Appl. Microbiol. Biotechnol. 1998;50:455–458. doi: 10.1007/s002530051320.

VIII. Elasri M.O., Miller R.V. Study of the response of a biofilm bacterial community to UV radiation. Appl. Environ. Microb. 1999;65:2025–2031.

IX. Bernbom N., Vogel B.F., Gram L. Listeria monocytogenes survival of UV-C radiation is enhanced by presence of sodium chloride, organic food material and by bacterial biofilm formation. Int. J. Food Microbiol. 2011;147:69–73.

doi: 10.1016/j.ijfoodmicro.2011.03.009.

X. Enyedi N.T., Anda D., Borsodi A.K., Szabó A., Pál S.E., Óvári M., Márialigeti K., Kovács-Bodor P., Mádl-Szőnyi J., Makk J. Radioactive environment adapted bacterial communities constituting the biofilms of hydrothermal spring caves (Budapest, Hungary) J. Environ. Radioact. 2019;203:8–17. doi: 10.1016/j.jenvrad.2019.02.010.

XI. Makarova K.S., Omelchenko M.V., Gaidamakova E.K., Matrosova V.Y., Vasilenko A., Zhai M., Lapidus A., Copeland A., Kim E., Land M., et al. Deinococcus geothermalis: The pool of extreme radiation resistance genes shrinks. PLoS ONE. 2007;2:e955. doi: 10.1371/journal.pone.0000955.

XII. Frosler J., Panitz C., Wingender J., Flemming H.C., Rettberg P. Survival of Deinococcus geothermalis in biofilms under desiccation and simulated space and martian conditions. Astrobiology. 2017;17:431–447. doi: 10.1089/ast.2015.1431.

XIII. Cihan A.C., Karaca B., Ozel B.P., Kilic T. Determination of the bioflm production capacities and characteristics of members belonging to Bacillaceae family. World J. Microbiol. Biotechnol. 2017;33:118. doi: 10.1007/s11274-017-2271-0.

XIV. Inskeep W.P., Macur R.E., Harrison G., Bostick B.C., Fendorf S. Biomineralization of as (V)-hydrous ferric oxyhydroxide in microbial mats of an acid-sulfate-chloride geothermal spring, Yellowstone National Park. Geochim. Cosmochim. Acta. 2004;68:3141–3155. doi: 10.1016/j.gca.2003.09.020.

XV. Macur R.E., Langner H.W., Kocar B.D., Inskeep W.P. Linking geochemical processes with microbial community analysis: Successional dynamics in an arsenic-rich, acid-sulphate-chloride geothermal spring. Geobiology. 2004;2:163–177. doi: 10.1111/j.1472-4677.2004.00032.x.

XVI. Kelley J.I., Turng B.F., Williams H.N., Baer M.L. Effects of temperature, salinity, and substrate on the colonization of surfaces in situ by aquatic bdellovibrios. Appl. Environ. Microbiol. 1997;63:84–90.

XVII. Williams H.N., Turng B.F., Kelley J.I. Survival response of Bacteriovorax in surface biofilm versus suspension when stressed by extremes in environmental conditions. Microb. Ecol. 2009;58:474–484. doi: 10.1007/s00248-009-9499-7.

XVIII. Caruso C., Rizzo C., Mangano S., Poli A., Donato P.D., Finore I., Nicolaus B., Marco G.D., Michaud L., Giudice A.L. Production and biotechnological potential of extracellular polymeric substances from sponge-associated antarctic bacteria. Appl. Environ. Microb. 2018;84:e01624-17.

doi: 10.1128/AEM.01624-17.

XIX. Hujslova M., Bystriansky L., Benada O., Gryndler M. Fungi, a neglected component of acidophilic biofilms: Do they have a potential for biotechnology? Extremophiles. 2019;23:267–275. doi: 10.1007/s00792-019-01085-9.

XX. Li T., Sharp C.E., Ataeian M., Strous M., de Beer D. Role of extracellular carbonic anhydrase in dissolved inorganic carbon uptake in alkaliphilic phototrophic biofilm. Front. Microbiol. 2018;9:2490. doi: 10.3389/fmicb.2018.02490.

XXI. Li X., Kappler U., Jiang G., Bond P.L. The ecology of acidophilic microorganisms in the corroding concrete sewer environment. Front. Microbiol. 2017;8:683. doi: 10.3389/fmicb.2017.00683.

XXII. Bellenberg S., Huynh D., Poetsch A., Sand W., Vera M. Proteomics reveal enhanced oxidative stress responses and metabolic adaptation in Acidithiobacillus ferrooxidans biofilm cells on pyrite. Front. Microbiol. 2019;10:592. doi: 10.3389/fmicb.2019.00592.

XXIII. Aguilera A., Souza-Egipsy V., Martín-Uriz P.S., Amils R. Extracellular matrix assembly in extreme acidic eukaryotic biofilms and their possible implications in heavy metal adsorption. Aquat. Toxicol. 2008;88:257–266.

doi: 10.1016/j.aquatox.2008.04.014.

XXIV. Hawkins P.T., Poyner D.R., Jackson T.R., Letcher A.J., Lander D.A., Irvine R.F. Inhibition of iron-catalysed hydroxyl radical formation by inositol polyphosphates: A possible physiological function for myo-inositol hexakisphosphate. Biochem. J. 1993;294:929–934. doi: 10.1042/bj2940929.

XXV. Shah V., Ray A., Garg N., Madamwar D. Characterization of the extracellular polysaccharide produced by a marine cyanobacterium, Cyanothece sp. ATCC 51142, and its exploitation toward metal removal from solutions. Curr. Microbiol. 2000;40:274–278. doi: 10.1007/s002849910054.

XXVI. Charles C.J., Rout S.P., Garratt E.J., Patel K., Laws A.P., Humphreys P.N. The enrichment of an alkaliphilic biofilm consortia capable of the anaerobic degradation of isosaccharinic acid from cellulosic materials incubated within an anthropogenic, hyperalkaline environment. FEMS Microbiol. Ecol. 2015;91:fiv085.

doi: 10.1093/femsec/fiv085.

XXVII. Rout S.P., Payne L., Walker S., Scott T., Heard P., Eccles H., Bond G., Shah P., Bills P., Jackson B.R., et al. The impact of alkaliphilic biofilm formation on the release and retention of carbon isotopes from nuclear reactor graphite. Sci. Rep. 2018;8:4455. doi: 10.1038/s41598-018-22833-5.

XXVIII. Charles C.J., Rout S.P., Patel K.A., Akbar S., Laws A.P., Jackson B.R., Boxall S.A., Humphreys P.N. Floc formation reduces the pH stress experienced by microorganisms living in alkaline environments. Appl. Environ. Microbiol. 2017;83:e02985-16. doi: 10.1128/AEM.02985-16.

XXIX. Chávez de Paz L.E., Bergenholtz G., Dahlén G., Svensäter G. Response to alkaline stress by root canal bacteria in biofilms. Int. Endod. J. 2007;40:344–355.

XXX. Van der Waal S.V., van der Sluis L.W., Özok A.R., Exterkate R.A., van Marle J., Wesselink P.R., de Soet J.J. The effects of hyperosmosis or high pH on a dual-species biofilm of Enterococcus faecalis and Pseudomonas aeruginosa: An in vitro study. Int. Endod. J. 2011;44:1110–1117. doi: 10.1111/j.1365-2591.2011.01929.x.

XXXI. Vyrides I., Stuckey D.C. Adaptation of anaerobic biomass to saline conditions: Role of compatible solutes and extracellular polysaccharides. Enzyme Microb. Technol. 2009;44:46–51. doi:. 10.1016/j.enzmictec 2008.09.008.

XXXII. Kimata-Kino N., Ikeda S., Kurosawa N., Toda T. Saline adaptation of granules in mesophilic UASB reactors. Int. Biodeter. Biodegr. 2011;65:65–72. doi: 10.1016/j.ibiod.2010.09.002.

XXXIII. Gagliano M.C., Ismail S.B., Stams A.J.M., Plugge C.M., Temmink H., Van Lier J.B. Biofilm formation and granule properties in anaerobic digestion at high salinity. Water Res. 2017;121:61–71. doi: 10.1016/j.watres.2017.05.016.

XXXIV. Adamiak J., Otlewska A., Gutarowska B. Halophilic microbial communities in deteriorated buildings. World J. Microb. Biot. 2015;31:1489–1499. doi: 10.1007/s11274-015-1913-3.

XXXV. Amjres H., Bejar V., Quesada E., Carranza D., Abrini J., Sinquin C., Ratiskol J., Colliec-Jouault S., Llamas I. Characterization of haloglycan, an exopolysaccharide produced by Halomonas stenophila HK30. Int. J. Biol. Macromol. 2015;72:117–124.

doi: 10.1016/j.ijbiomac.2014.07.052.

XXXVI. Mallick I., Bhattacharyya C., Mukherji S., Dey D., Sarkar S.C., Mukhopadhyay U.K., Ghosh A. Effective rhizoinoculation and biofilm formation by arsenic immobilizing halophilic plant growth promoting bacteria (PGPB) isolated from mangrove rhizosphere: A step towards arsenic rhizoremediation. Sci. Total Environ. 2018;610–611:1239–1250.

doi: 10.1016/j.scitotenv.2017.07.234.

XXXVII. Zhao L., She Z., Jin C., Yang S., Guo L., Zhao Y., Gao M. Characteristics of extracellular polymeric substances from sludge and biofilm in a simultaneous nitrification and denitrification system under high salinity stress. Bioprocess Biosyst. Eng. 2016;39:1375–1389. doi: 10.1007/s00449-016-1613-x.

XXXVIII. You G., Hou J., Xu Y., Wang C., Wang P., Miao L., Ao Y., Li Y., Lv B. Effects of CeO2 nanoparticles on production and physicochemical characteristics of extracellular polymeric substances in biofilms in sequencing batch biofilm reactor. Bioresour. Technol. 2015;194:91–98.

doi: 10.1016/j.biortech.2015.07.006.

XXXIX. Kato C., Qureshi M.H. Pressure response in deep-sea piezophilic bacteria. J. Molec. Microbiol. Biotechnol. 1999;1:87–92.

XL. Simonato F., Campanaro S., Lauro F.M., Vezzi A., D’Angelo M., Vitulo N., Valle G., Bartlett D.H. Piezophilic adaptation: A genomic point of view. J. Biotechnol. 2006;126:11–25.

doi: 10.1016/j.jbiotec.2006.03.038.

XLI. Masanta W.O., Hinz R., Zautner A.E. Infectious causes of cholesteatoma and treatment of infected ossicles prior to reimplantation by hydrostatic high-pressure inactivation. BioMed Res. Int. 2015;2015:761259. doi: 10.1155/2015/761259.

XLII. Pavlovic M., Hormann S., Vogel R.F., Ehrmann M.A. Transcriptional response reveals translation machinery as target for high pressure in Lactobacillus sanfranciscensis. Arch. Microbiol. 2005;184:11–17. doi: 10.1007/s00203-005-0021-4.

XLIII. Kadam S.R., den Besten H.M., van der Veen S., Zwietering M.H., Moezelaar R., Abee T. Diversity assessment of Listeria monocytogenes biofilm formation: Impact of growth condition, serotype and strain origin. Int. J. Food Microbiol. 2013;165:259–264. doi: 10.1016/j.ijfoodmicro.2013.05.025.

XLIV. Combrouse T., Sadovskaya I., Faille C., Kol O., Guerardel Y., Midelet-Bourdin G. Quantification of the extracellular matrix of the Listeria monocytogenes biofilms of different phylogenic lineages with optimization of culture conditions. J. Appl. Microbiol. 2013;114:1120–1131.

doi: 10.1111/jam.12127.

XLV. Cherifi T., Jacques M., Quessy S., Fravalo P. Impact of nutrient restriction on the structure of Listeria monocytogenes biofilm grown in a microfluidic system. Front. Microbiol. 2017;8:864.

doi: 10.3389/fmicb.2017.00864.

XLVI. Smith D.R., Maestre-Reyna M., Lee G., Gerard H., Wang A.H., Watnick P.I. In situ proteolysis of the Vibrio cholerae matrix protein RbmA promotes biofilm recruitment. Proc. Natl. Acad. Sci. USA. 2015;112:10491–10496.

doi: 10.1073/pnas.1512424112.

XLVII. Fong J.C., Yildiz F.H. Interplay between cyclic AMP-cyclic AMP receptor protein and cyclic di-GMP signaling in Vibrio cholerae biofilm formation. J. Bacteriol. 2008;190:6646–6659. doi: 10.1128/JB.00466-08.

XLVIII. Falkinham J.O., 3rd Surrounded by mycobacteria: Nontuberculous mycobacteria in the human environment. J. Appl. Microbiol. 2009;107:356–367. doi: 10.1111/j.1365-2672.2009.04161.x.

XLIX. Mittelman M.W., Jones A.D.G. A pure life: The microbial ecology of high purity industrial waters. Microb. Ecol. 2018;76:9–18. doi: 10.1007/s00248-016-0736-6.

L. Olsen I. Biofilm-specific antibiotic tolerance and resistance. Eur. J. Clin. Microbiol. 2015;34:877–886. doi: 10.1007/s10096-015-2323-z.

LI. Blair J.M., Webber M.A., Baylay A.J., Ogbolu D.O., Piddock L.J. Molecular mechanisms of antibiotic resistance. Nat. Rev. Microbiol. 2015;13:42–51. doi: 10.1038/nrmicro3380.

LII. Anderl J.N., Franklin M.J., Stewart P.S. Role of antibiotic penetration limitation in Klebsiella pneumoniae biofilm resistance to ampicillin and ciprofloxacin. Antimicrob. Agents Chemother. 2000;44:1818–1824. doi: 10.1128/AAC.44.7.1818-1824.2000.

LIII. Dunne W.M., Jr., Mason E.O., Jr., Kplan S.L. Diffusion of rifampin and vancomycin through a Staphylococcus epidermidis biofilm. Antimicrob. Agents Chemother. 1993;37:2522–2526. doi: 10.1128/AAC.37.12.2522.

LIV. Nadell C.D., Drescher K., Wingreen N.S., Bassler B.L. Extracellular matrix structure governs invasion resistance in bacterial biofilms. ISME J. 2015;9:1700–1709. doi: 10.1038/ismej.2014.246.

LV. De la Fuente-Núñez C., Reffuveille F., Fernández L., Hancock R.E. Bacterial biofilm development as a multicellular adaptation: Antibiotic resistance and new therapeutic strategies. Curr. Opin. Microbiol. 2013;16:580–589. doi: 10.1016/j.mib.2013.06.013.

LVI. Singh R., Ray P., Das A., Sharma M. Penetration of antibiotics through Staphylococcus aureus and Staphylococcus epidermidis biofilms. J. Antimicrob. Chemother. 2010;65:1955–1958. doi: 10.1093/jac/dkq257.

LVII. Kumon H., Tomochika K., Matunaga T., Ogawa M., Ohmoril H. A sandwich cup method for the penetration assay of antimicrobial agents through Pseudomonas exopolysaccharides. Microbiol. Immunol. 1994;38:615–619. doi: 10.1111/j.1348-0421.1994.tb01831.x.

LVIII. Giwercman B., Jensen E.T., Høiby N., Kharazmi A., Costerton J.W. Induction of β-lactamase production in Pseudomonas aeruginosa biofilm. Antimicrob. Agents Chemother. 1991;35:1008–1010. doi: 10.1128/AAC.35.5.1008.

LIX. Stewart P.S. Theoretical aspects of antibiotic diffusion into microbial biofilms. Antimicrob. Agents Chemother. 1996;40:2517–2522. doi: 10.1128/AAC.40.11.2517.

LX. Jennings L.K., Storek K.M., Ledvina H.E., Coulon C., Marmont L.S., Sadovskaya I., Secor P.R., Tseng B.S., Scian M., Filloux A., et al. Pel is a cationic exopolysaccharide that cross-links extracellular DNA in the Pseudomonas aeruginosa biofilm matrix. Proc. Natl. Acad. Sci. USA. 2015;112:11353–11358.

doi: 10.1073/pnas.1503058112.

LXI. Colvin K.M., Gordon V.D., Murakami K., Borlee B.R., Wozniak D.J., Wong G.C., Parsek M.R. The Pel polysaccharide can serve a structural and protective role in the biofilm matrix of Pseudomonas aeruginosa. PLoS Pathog. 2011;7:e1001264. doi: 10.1371/journal.ppat.1001264.

LXII. Dogtrid I.G., Evans E., Brown M.R.W., Gilbert P. Growth-rate-independent killing by ciprofloxacin of biofilm-derived Staphylococcus epidermidis evidence for cell-cycle dependency. J. Antimicrob. Chemother. 1992;30:791–802.

LXIII. Evans D.J., Allison D.G., Brown M.R.W., Gilbert P. Susceptibility of Pseudomonas aeruginosa and Escherichia coli biofilms towards ciprofloxacin: Effect of specific growth rate. J. Antimicrob. Chemother. 1991;27:177–184.

doi: 10.1093/jac/27.2.177.

LXIV. Gilbert P., Collier P.J., Brown M.R.W. Influence of growth rate on susceptibility to antimicrobial agents: Biofilms, cell cycle, dormancy, and stringent response. Antimicrob. Agents Chemother. 1990;34:1865–1868.

doi: 10.1128/AAC.34.10.1865.

LXV. Anwar H., Strap J.L., Costerton J.W. Establishment of aging biofilms: Possible mechanism of bacterial resistance to antimicrobial therapy. Antimicrob. Agents Chemother. 1992;36:1347–1351.

doi: 10.1128/AAC.36.7.1347.

LXVI. Mcleod G.I., Spector M.P. Starvation- and stationary-phase-induced resistance to the antimicrobial peptide polymyxin B in Salmonella typhimurium is RpoS (σS) independent and occurs through both phoP-dependent and -independent pathway. J. Bacteriol. 1996;178:3683–3688. doi: 10.1128/jb.178.13.3683-3688.1996

LXVII. Williamson K.S., Richards L.A., Perez-Osorio A.C., Pitts B., McInnerney K., Stewart P.S., Franklin M.J. Heterogeneity in Pseudomonas aeruginosa biofilms includes expression of ribosome hibernation factors in the antibiotic-tolerant subpopulation and hypoxia-induced stress response in the metabolically active population. J. Bacteriol. 2012;194:2062–2073. doi: 10.1128/JB.00022-12.

LXVIII. Lewis K. Persister cells: Molecular mechanisms related to antibiotic tolerance. Handb. Exp. Pharmacol. 2012;211:121–133.

LXIX. Mah T.F., Pitts B., Pellock B., Walker G.C., Stewart P.S., O’Toole G.A. A genetic basis for Pseudomonas aeruginosa biofilm antibiotic resistance. Nature. 2003;426:306–310. doi: 10.1038/nature02122.

LXX. Bae J., Oh E., Jeon B. Enhanced transmission of antibiotic resistance in Campylobacter jejuni biofilms by natural transformation. Antimicrob. Agents Chemother. 2014;58:7573–7575. doi: 10.1128/AAC.04066-14.

LXXI. Limoli D.H., Rockel A.B., Host K.M., Jha A., Kopp B.T., Hollis T., Wozniak D.J. Cationic antimicrobial peptides promote microbial mutagenesis and pathoadaptation in chronic infections. PLoS Pathog. 2014;10:e1004083. doi: 10.1371/journal.ppat.1004083.

LXXII. Cook L.C., Dunny G.M. Effects of biofilm growth on plasmid copy number and expression of antibiotic resistance genes in Enterococcus faecalis. Antimicrob. Agents Chemother. 2013;57:1850–1856. doi: 10.1128/AAC.02010-12.

LXXIII. Poole K. Multidrug resistance in Gram-negative bacteria. Curr. Opin. Microbiol. 2001;4:500–508. doi: 10.1016/S1369-5274(00)00242-3.

LXXIV. Sun J., Deng Z., Yan A. Bacterial multidrug efflux pumps: Mechanisms, physiology and pharmacological exploitations. Biochem. Biophys. Res. Commun. 2014;453:254–267.

doi: 10.1016/j.bbrc.2014.05.090.

LXXV. Fraud S., Poole K. Oxidative stress induction of the MexXY multidrug efflux genes and promotion of aminoglycoside resistance development in Pseudomonas aeruginosa. Antimicrob. Agents Chemother. 2011;55:1068–1074.

doi: 10.1128/AAC.01495-10.

LXXVI. Zhang L., Mah T.F. Involvement of a novel efflux system in biofilm-specific resistance to antibiotics. J. Bacteriol. 2008;190:4447–4452. doi: 10.1128/JB.01655-07.

LXXVII. Wang Q., Sun F.J., Liu Y., Xiong L.R., Xie L.L., Xia P.Y. Enhancement of biofilm formation by subinhibitory concentrations of macrolides in icaADBC-positive and -negative clinical isolates of Staphylococcus epidermidis. Antimicrob. Agents Chemother. 2010;54:2707–2711. doi: 10.1128/AAC.01565-09.

LXXVIII. Rachid S., Ohlsen K., Witte W., Hacker J.R., Ziebuhr W. Effect of subinhibitory antibiotic concentrations on polysaccharide intercellular adhesin expression in biofilm-forming Staphylococcus epidermidis. Antimicrob. Agents Chemother. 2000;44:3357–3363.

doi: 10.1128/AAC.44.12.3357-3363.2000.

LXXIX. Wu S., Li X., Gunawardana M., Maguire K., Guerrero-Given D., Schaudinn C., Wang C., Baum M.M., Webster P. Beta-lactam antibiotics stimulate biofilm formation in non-typeable Haemophilus influenzae by up-regulating carbohydrate metabolism. PLoS ONE. 2014;9:e99204. doi: 10.1371/journal.pone.0099204.

LXXX. Burmolle M., Ren D., Bjarnsholt T., Sorensen S.J. Interactions in multispecies biofilms: Do they actually matter? Trends Microbiol. 2014;22:84–91. doi: 10.1016/j.tim.2013.12.004.

LXXXI. Roder H.L., Sorensen S.J., Burmolle M. Studying bacterial multispecies biofilms: Where to start? Trends Microbiol. 2016;24:503–513. doi: 10.1016/j.tim.2016.02.019.

LXXXII. Burmolle M., Webb J.S., Rao D., Hansen L.H., Sorensen S.J., Kjelleberg S. Enhanced biofilm formation and increased resistance to antimicrobial agents and bacterial invasion are caused by synergistic interactions in multispecies biofilms. Appl. Environ. Microbiol. 2006;72:3916–3923. doi: 10.1128/AEM.03022-05.

LXXXIII. De Brucker K., Tan Y., Vints K., De Cremer K., Braem A., Verstraeten N., Michiels J., Vleugels J., Cammue B.P., Thevissen K. Fungal beta-1,3-glucan increases ofloxacin tolerance of Escherichia coli in a polymicrobial E. coli/Candida albicans biofilm. Antimicrob. Agents Chemother. 2015;59:3052–3058. doi: 10.1128/AAC.04650-14.

LXXXIV. Shirtliff M.E., Peters B.M., Jabra-Rizk M.A. Cross-kingdom interactions: Candida albicans and bacteria. FEMS Microbiol. Lett. 2009;299:1–8. doi: 10.1111/j.1574-6968.2009.01668.x.

LXXXV. Harriott M.M., Noverr M.C. Candida albicans and Staphylococcus aureus form polymicrobial biofilms: Effects on antimicrobial resistance. Antimicrob. Agents Chemother. 2009;53:3914–3922. doi: 10.1128/AAC.00657-09.

LXXXVI. Peters B.M., Jabra-Rizk M.A., Scheper M.A., Leid J.G., Costerton J.W., Shirtliff M.E. Microbial interactions and differential protein expression in Staphylococcus aureus-Candida albicans dual-species biofilms. FEMS Immunol. Med. Microbiol. 2010;59:493–503.

doi: 10.1111/j.1574-695X.2010.00710.x.

LXXXVII. Gambino M., Cappitelli F. Mini-review: Biofilm responses to oxidative stress. Biofouling. 2016;32:167–178.

doi: 10.1080/08927014.2015.1134515.