Importance of Virulence Factors in Bacterial Pathogenicity: A Review
Main Article Content
Abstract
Understanding the strategies of bacterial infections requires an extensive knowledge of the essential role virulence factors play in bacterial pathogenicity. These components are essential in spreading of the infection, the capacity of the bacteria to avoid host defenses and the start of disease. The absence or presence of certain virulence factors has significant influence on the rate of infection dissemination. Virulence factors are divided into four groups: adhesion factors, invasion factors, toxin factors and immune evasion factors. The review here, addresses how virulence parameters affect host cells and tissues, how they may influence disease development and how they may be utilized to identify and treat bacterial infections. Controlling virulence parameters is also an important aspect of this. Virulence parameters expression can be influenced by variety of genetic and environmental variables, including quorum sensing which is not always present. Finally developing efficient prevention and therapeutic techniques for bacterial infections requires detailed understanding of the control of virulence parameters. Indicating the important role of virulence factors in bacterial pathogenicity is vital in the development of powerful treatment methods.
Article Details
This work is licensed under a Creative Commons Attribution 4.0 International License.
References
I. Finlay, B. B. and Falkow, S. (1997). Common themes in microbial pathogenicity revisited. Microbiology and Molecular Biology Reviews, 61(2): 136-169.
II. Pizarro-Cerdá, J. and Cossart, P. (2006). Bacterial adhesion and entry into host cells. Cell, 124(4): 715-727.
III. Pakbin, B., Brück, W. M. and Rossen, J. W. A. (2021). Virulence Factors of Enteric Pathogenic Escherichia coli: A Review. Int J Mol Sci. 22(18): 9922.
IV. Casadevall, A. and Pirofski, L. A. (2009). Virulence factors and their mechanisms of action: the view from a damage-response framework. J Water Health. 7: S2-S18.
V. Giltner, C. L., Nguyen, Y. and Burrows, L. L. (2012). Type IV pilin proteins: versatile molecular modules. Microbiology and molecular biology reviews, 76(4): 740-772.
VI. Weiser, J. N., Ferreira, D. M. and Paton, J. C. (2018). Streptococcus pneumoniae: transmission, colonization and invasion. Nat Rev Microbiol. 16(11): 355-367.
VII. Figueira, R. and Holden, D. W. (2012). Functions of the Salmonella pathogenicity island 2 (SPI-2) type III secretion system effectors. Microbiology, 158(5): 1147-1161.
VIII. Lertpiriyapong, K., Whary, M. T., Muthupalani, S., Lofgren, J. L., Gamazon, E. R., Feng, Y. and Fox, J. G. (2014). Gastric colonisation with a restricted commensal microbiota replicates the promotion of neoplastic lesions by diverse intestinal microbiota in the Helicobacter pylori INS-GAS mouse model of gastric carcin ogenesis. Gut, 63(1): 54-63.
IX. Raetz, C. R. and Whitfield, C. (2002). Lipopolysaccharide endotoxins. Annu Rev Biochem. 71: 635-700.
X. Bae, J., Jin, H., Kim, J., Park, M., Lee, J. and Kim, S. (2021). Molecular Characteristics and Exotoxins of Methicillin-Resistant Staphylococcus aureus. Biomedical Science Letters, 27(4): 195-207.
XI. Kaper, J. B., Morris, J. G. and Levine, M. M. Cholera. (1995). Clin Microbiol Rev. 8(1): 48-86.
XII. Hair, P. S., Echague, C. G., Sholl, A. M., Watkins, J. A., Geoghegan, J. A., Foster, T. J. and Cunnion, K. M. (2008). Staphylococcus aureus clumping factor A binds to complement regulator factor I and increases factor I cleavage of C3b. J Infect Dis. 198(1):125-133.
XIII. Fieber, C. and Kovarik, P. (2014). Responses of innate immune cells to group A Streptococcus. Front. Cell. Infect. Microbiol. 4:140.
XIV. Depluverez, S., Devos, S. and Devreese, B. (2016). The Role of Bacterial Secretion Systems in the Virulence of Gram-Negative Airway Pathogens Associated with Cystic Fibrosis. Front Microbiol. 7: 1336.
XV. Mulvey, M.A., Schilling, J. D., Martinez, J. J. and Hultgren, S. J. (2000). Bad bugs and beleaguered bladders: interplay between uropathogenic Escherichia coli and innate host defenses. Proc Natl Acad Sci U S A. 97(16): 8829-8835.
XVI. McGhie, E. J., Brawn, L. C., Hume, P. J., Humphreys, D. and Koronakis, V. (2009). Salmonella takes control: effector-driven manipulation of the host. Curr Opin Microbiol. 12(1): 117-124.
XVII. Cambier, C. J., Falkow, S. and Ramakrishnan, L. (2014). Host evasion and exploitation schemes of Mycobacterium tuberculosis. Cell. 159(7): 1497-1509.
XVIII. Cunningham, M. W. (2000). Pathogenesis of group A streptococcal infections. Clinical Microbiology Reviews, 13(3): 470-511.
XIX. Moxon, E. R., Rainey, P. B., Nowak, M. A. and Lenski, R. E. (1994). Adaptive evolution of highly mutable loci in pathogenic bacteria. Current Biology, 4(1): 24-33.
XX. Costerton, J. W., Stewart, P. S. and Greenberg, E. P. (1999). Bacterial biofilms: a common cause of persistent infections. Science, 284(5418): 1318-1322.
XXI. Lina, G., Piémont, Y., Godail-Gamot, F., Bes, M., Peter, M. O., Gauduchon, V., Vandenesch, F. and Etienne, J. (1999). Involvement of Panton-Valentine leukocidin–producing Staphylococcus aureus in primary skin infections and pneumonia. Clinical Infectious Diseases, 29(5): 1128-1132.
XXII. Grundmann, H., Schouls, L. M., Aanensen, D. M. A., Pluister, G. N., Tami, A., Chlebowicz, M., Glasner, C., Sabat, A. J., Weist, K., Heuer, O. and Friedrich, A. W. (2014). The dynamic changes of dominant clones of Staphylococcus aureus causing bloodstream infections in the European region: results of a second structured survey. Euro Surveill. 19(49): 20987.
XXIII. Dehbanipour, R. and Ghalavand, Z. (2022). Anti-virulence therapeutic strategies against bacterial infections: recent advances. Germs. 12(2): 262-275.
XXIV. Hentzer, M., Wu, H., Andersen, J. B., Riedel, K., Rasmussen, T. B., Bagge, N., Kumar, N., Schembri, M. A., Song, Z., Kristoffersen, P., Manefield, M., Costerton, J. W., Molin, S., Eberl, L., Steinberg, P., Kjelleberg, S., Høiby, N. and Givskov, M. (2003). Attenuation of Pseudomonas aeruginosa virulence by quorum sensing inhibitors. EMBO J. 22(15): 3803-3815.
XXV. Sivick, K. E. and Mobley, H. L. T. (2010). Waging War against Uropathogenic Escherichia coli: Winning Back the Urinary Tract. Infect. Immun. 78(2): 568-585.
XXVI. Gahlot, D.K., Taheri, N. and MacIntyre, S. (2023). Diversity in Genetic Regulation of Bacterial Fimbriae Assembled by the Chaperone Usher Pathway. Int. J. Mol. Sci. 24(1): 161.
XXVII. Aal Owaif, H. A., Mhawesh, A. A. and Abdulateef, S. A. (2019). The role of BipA in the regulation of K1 capsular polysaccharide production of uropathogenic Escherichia coli. Ann Trop Med Public Health. 22: S254.
XXVIII. Novick, R. P., Ross, H. F., Projan, S. J., Kornblum, J., Kreiswirth, B. and Moghazeh, S. (1993). Synthesis of staphylococcal virulence factors is controlled by a regulatory RNA molecule. The EMBO Journal, 12(10): 3967-3975.
XXIX. Brencic, A., McFarland, K. A., McManus, H. R., Castang, S., Mogno, I., Dove, S. L. and Lory, S. (2009). The GacS/GacA signal transduction system of Pseudomonas aeruginosa acts exclusively through its control over the transcription of the RsmY and RsmZ regulatory small RNAs. Molecular Microbiology, 73(3): 434-445.
XXX. Eriksson, S., Lucchini, S., Thompson, A., Rhen, M. and Hinton, J. C. (2003). Unravelling the biology of macrophage infection by gene expression profiling of intracellular Salmonella enterica. Mol Microbiol. 47(1): 103-118.
XXXI. Odenbreit, S., Puls, J., Sedlmaier, B., Gerland, E., Fischer, W. and Haas, R. (2000). Translocation of Helicobacter pylori CagA into gastric epithelial cells by type IV secretion. Science, 287: 1497-1500.
XXXII. Amieva, M. R., and El-Omar, E. M. (2008). Host-bacterial interactions in Helicobacter pylori infection. Gastroenterology, 134(2): 306-323.
XXXIII. Zhang, Y., Romanov, G. and Bliska, J. B. (2011). Type III Secretion System-Dependent Translocation of Ectopically Expressed Yop Effectors into Macrophages by Intracellular Yersinia pseudotuberculosis. Infect Immun, 79(11): 4322-4331.
XXXIV. Miller, M. B. and Bassler, B. L. (2001). Quorum sensing in bacteria. Annu Rev Microbiol, 55: 165-199.
XXXV. Fuqua, W. C., Winans, S. C. and Greenberg, E. P. (1994). Quorum sensing in bacteria: the LuxR-LuxI family of cell density-responsive transcriptional regulators. J Bacteriol, 176(2): 269-275.
XXXVI. Passador, L., Cook, J. M., Gambello, M. J., Rust, L. and Iglewski, B. H. (1993). Expression of Pseudomonas aeruginosa virulence genes requires cell-to-cell communication. Science, 260(5111): 1127-1130.
XXXVII. Pearson, J. P., Pesci, E. C. and Iglewski, B. H. (1997). Roles of Pseudomonas aeruginosa las and rhl quorum-sensing systems in control of elastase and rhamnolipid biosynthesis genes. Journal of bacteriology, 179(18): 5756-5767.
XXXVIII. Latifi, A., Foglino, M., Tanaka, K., Williams, P., and Lazdunski, A. (1996). A hierarchical quorum-sensing cascade in Pseudomonas aeruginosa links the transcriptional activators LasR and RhIR (VsmR) to expression of the stationary-phase sigma factor RpoS. Molecular microbiology, 21(6): 1137-1146.
XXXIX. Le, K. Y. and Otto, M. (2015). Quorum-sensing regulation in staphylococci-an overview. Frontiers in microbiology, 6: 1174.