Antibacterial Activity of Nano-Sized Gourami Fish Scales Powder (Osphronemus Gourami) Added to Conventional Glass Ionomer Cement

Main Article Content

Erawati Wulandari
Yohana Maria Penga
Pujiana Endah lestari
Tecky Indriana
I Dewa Ayu Ratna Dewanti

Abstract

Background: Gourami scales contain antibacterial compounds, e.g., catechins, chitin, calcium, omega 3, omega 6, and flavonoids. Our previous studies have shown that millimicrons-sized gourami fish scales powder (GFSP) added to Glass ionomer cement (GIC) acts as an immunomodulator against Streptococcus mutans both in vitro and in vivo. However, the antibacterial activity of the material was affected by the particle size, and the effects of smaller GFSP, which is nano-sized (nGFSP), on oral biofilms are largely unknown.


Materials and Methods: This study analyzed the potential of nGFSP added to conventional GIC in inhibiting the growth of Streptococcus sanguinis, Streptococcus mutans, and Staphylococcus aureus. nGFSP were divided into five groups, 0% (control), 0.5%, 1.5%, 2.5%, and 3.5% (4 samples for each group). The antibacterial activity was evaluated using the agar diffusion method. Then, the diameter of the inhibition zone was measured and analyzed using ANOVA followed by the LSD test.


Results: Antibacterial activity against S. sanguinis, S. aureus, and S. mutans significantly increased with nGFSP. The largest zone of inhibition was measured at a concentration of 3.5%, that is, 4.02 mm (S. sanguinis) and 2.29 mm (S. aureus). Meanwhile, nGFSP is more effective in inhibiting the growth of S. mutans in an optimum concentration of 0.5% with a zone of inhibition is 3.54 mm.


Conclusion: The addition of nGFSP improved the antibacterial activity of GIC against gram-positive pathogenic bacteria, such as S. sanguinis, S. aureus, and S. mutans.


 

Article Details

How to Cite
Erawati Wulandari, Penga, Y. M., Pujiana Endah lestari, Tecky Indriana, & I Dewa Ayu Ratna Dewanti. (2023). Antibacterial Activity of Nano-Sized Gourami Fish Scales Powder (Osphronemus Gourami) Added to Conventional Glass Ionomer Cement . International Journal of Medical Science and Clinical Research Studies, 3(4), 679–683. https://doi.org/10.47191/ijmscrs/v3-i4-19
Section
Articles
Author Biography

Yohana Maria Penga, Department of Basic Dental Sciences, University of Jember, Indonesia

Departmenf of Basic Dental Sciences 

References

I. Naik RG, Dodamani AS, and Khairnar MR. Comparative Assessment Of Antibacterial Activity Of Different Glass Ionomer Cements On Cariogenic Bacteria. Restorative Dentistry & Endodontic Research Article. 2016 Nov;41(4): 278-282. DOI: 10.5395/rde.2016.41.4.278

II. Tuzuner T, Dimkov A, Nicholson JW. The Effect of Antimicrobial Additives on The Properties of Dental Glass Ionomer Cements: A Review. Biomaterial Investigations in Dentistry. 2019:5(1): 9-21. DOI: 10.1080/23337931.2018.1539623

III. De Souza BM, Santos D, Daiana MS, Magalhães, Ana C. Antimicrobial and Anti-Caries Effect of New Glass Ionomer Cement on Enamel Under Microcosm Biofilm Model. Brazilian Dental Journal. 2018;29(6): 599-605. DOI: 10.1590/0103-6440201802163

IV. Yadiki JV, Jampanapalli SR, Konda S, Inguva HC, Chimata VK. Comparative Evaluation of The Antimicrobial Properties of Glass Ionomer Cement With and Without Chlorhexidine Gluconate. International Journal of Clinical Pediatric Dentistry. 2016;9(2): 99-103. DOI: 10.5005/jp-journals-10005-1342

V. Ankita D, Rahul L, Alok P, Preetam S, Chetan B, Sanket K. Comparative Evaluation Of Antimicrobial Efficacy, Compressive Strength, and Diametral Tensile Strength Of GIC IX, GIC IX with 1% Chlorhexidine, and GIC IX with 1% Cetrimide: An In Vitro Study. International Journal Of Current Research. 2017;9(07): 55013-55018. DOI: 10.4103/2231-0762.181188

VI. Zhu D, Ortega CF, Motamedi R, Szewciw L, Vernerey F, and Barthelat F. Structure and mechanical performance of a ‘‘modern’’ fish scale. Journal Advanced Engineering Materials. 2011;14(4): 185–194. DOI: https://doi.org/10.1002/adem.201180057

VII. Ting-ting D, hui WJ, Yan G, Xing-ya X, De-gong W, Wei Z, Yu-song H, Ning L, Ling W, and Pei-xun X. Characterization of the cross-structure and composition of crucian fish scales. Chinese Journal of Tissue Engineering Research 2018;22(26): 4191-4195. DOI: 10.3969/j.issn.2095-4344.0949

VIII. Dewanti IDAR. Bones, Scales of Upeneus sulphureus, and Osphronemus gouramy increase adhesion and decrease IL-1β expression on monocytes against Streptococcus mutans. Annals Of Tropical Medicine And Health. 2020; Vol. 23 Issue 8: 1253-1258. DOI:10.36295/ASRO.2020.23810

IX. Dewanti IDAR, Widhi R, Budirahardjo R, Wulandari E, Wahyukundari MA, Sunlip. The role of Kuniran (U. moluccensis) and Gurami (O. gouramy) fish thorns and scales in increasing salivary leukocyte and monocyte cell viability against Streptococcus mutans. Dent. J. (Majalah Kedokteran Gigi). 2019;52(1): 51–57. DOI: https://doi.org/10.20473/j.djmkg.v52.i1.p45-50

X. Dewanti IDAR, Dwi AF, Silviana IM, Afifah A, Za’imah TR, Wulandari E. Marginal gap, compressive strength, and bacterial inhibition of gurami fish (Osphronemus Gourami) scale powder. IOSR J Dent Med Sci. 2022;21(1): 53–59. DOI: 10.9790/0853-2101015359

XI. Wang L, Hu C, Shao L. The antimicrobial activity of nanoparticles: present situation and prospects for the future. International Journal of Nanomedicine. 2017; vol 12: 1227–1249. DOI: 10.2147/IJN.S121956

XII. Wulandari E, Farah RAW, Nadie F, Dewanti IDAR. Analisa penambahan bubuk sisik ikan gurami (Oshpronemus gouramy) terhadap porositas semen ionomer kaca. Dental Journal. 2022;55(1): 33–37.

XIII. Mawadara PA, Mozartha M, Trisnawaty K. Pengaruh penambahan hidroksiapatit dari cangkang telur ayam terhadap kekerasan permukaan GIC. Jurnal Material Kedokteran Gigi. 2016;2(5): 8-14

XIV. Deo P N, Deshmukh R. Oral microbiome: Unveiling the fundamentals. J Oral Maxillofac Pathol, 2019; 23(1): 122–128. DOI: 10.4103/jomfp.JOMFP_304_18

XV. Pandharipande S, Jana R, Ramteke A. Synthesis and characterization of chitosan from fish scales. International Journal of Science, Engineering and Technology Research (IJSETR), 2018;7(4): 287-291

XVI. Kucharska M, Sikora M, Kinga BM, Monika O. Chitin and Chitosan: Properties and Applications, 1st ed. New Jersey: John Wiley & Sons Ltd., 2019.

XVII. Chanda W, Joseph TP, Guo X, Wang W, Liu M, Vuai MS, Padhiar AA, Zhong M. Effectiveness Of Omega-3 Polyunsaturated Fatty Acids Against Microbial Pathogens. Journal Of Zhejiang University Science B (Biomedicine and Biotechnology). 2018;19(4): 253-262. DOI: 10.1631/jzus.B1700063

XVIII. Breaker RR. New Insight On The Response Of Bacteria To Fluoride. Caries Research. 2012;46(1): 78-81. DOI: 10.1159/000336397

XIX. Khere CH, Hiremath H. Sandesh N, Misar P, Gorie N. Evaluation Of Antibacterial Activity Of Three Different Glass Ionomer Cement On Streptococcus mutans: An In Vitro Antimicrobial Study. Med Pharm Rep. 2019 Jul; 92(3): 288-293. DOI: 10.15386/mpr-1113

XX. Franci G, Falanga A, Galdiero S, Palomba L, Rai M, Morelli G, Galdiero M. Silver nanoparticles as potential antibacterial agents. Molecules. 2015;(20): 8856–8874. DOI: 10.3390/molecules20058856

XXI. Lin D and Xing B. Phytotoxicity of nanoparticles: inhibition of seed germination and root growth. Environmental Pollution. 2007;150(2): 243–250. DOI: https://doi.org/10.1016/j.envpol.2007.01.016

XXII. Goudarzi MR, Bagherzadeh M, Fazilati M, Riahi F, Salavati H, Esfahani SS. Evaluation of antibacterial property of hydroxyapatite and zirconium oxide-modificated magnetic nanoparticles against Staphylococcus aureus and Escherichia coli. Journal IET Nanobiotechnol. 2019; Vol. 13 Iss. 4: 447-453. DOI: 10.1049/iet-nbt.2018.5029