Gene Editing in Cancer Therapy

Main Article Content

Gloria Nataly Pérez Serrano
Alejandra Jeraldine Gonzalez Barajas

Abstract

The site-specific modification of an existing gene is known as gene editing. A section of DNA must be cut with an endonuclease (such as the CRISPR-Cas9 system) before the two severed ends are brought together, frequently with a new or improved sequence inserted between them. Somatic cell gene editing can be helpful in a variety of clinical contexts, and some preliminary preclinical and clinical trials have been carried out. Extremely high levels of precision are required for DNA recognition, excision, and repair; issues with publishing integrity must be resolved. Germline editing utilizing eggs, sperm, or embryos raises ethical concerns.

Article Details

How to Cite
Serrano, G. N. P. ., & Barajas, A. J. G. (2022). Gene Editing in Cancer Therapy. International Journal of Medical Science and Clinical Research Studies, 2(10), 1120–1122. https://doi.org/10.47191/ijmscrs/v2-i10-22
Section
Articles

References

I. Mao, Y., Botella, J. R., Liu, Y., & Zhu, J. K. (2019). Gene editing in plants: progress and challenges. National Science Review, 6(3), 421-437.

II. Mosbach, V., Poggi, L., & Richard, G. F. (2019). Trinucleotide repeat instability during double-strand break repair: from mechanisms to gene therapy. Current genetics, 65(1), 17-28.

III. Salsman, J., & Dellaire, G. (2017). Precision genome editing in the CRISPR era. Biochemistry and cell biology, 95(2), 187-201.

IV. Singh, V., Braddick, D., & Dhar, P. K. (2017). Exploring the potential of genome editing CRISPR-Cas9 technology. Gene, 599, 1-18.

V. Anzalone, A. V., Koblan, L. W., & Liu, D. R. (2020). Genome editing with CRISPR–Cas nucleases, base editors, transposases and prime editors. Nature biotechnology, 38(7), 824-844.

VI. Urnov, F. D., Rebar, E. J., Holmes, M. C., Zhang, H. S., & Gregory, P. D. (2010). Genome editing with engineered zinc finger nucleases. Nature Reviews Genetics, 11(9), 636-646.

VII. Sun, N., & Zhao, H. (2013). Transcription activator‐like effector nucleases (TALENs): a highly efficient and versatile tool for genome editing. Biotechnology and bioengineering, 110(7), 1811-1821.

VIII. Moreno-Mateos, M. A., Fernandez, J. P., Rouet, R., Vejnar, C. E., Lane, M. A., Mis, E., ... & Giraldez, A. J. (2017). CRISPR-Cpf1 mediates efficient homology-directed repair and temperature-controlled genome editing. Nature communications, 8(1), 1-9.

IX. Prado, G. S., Pinheiro, T. T., de FARIA, J. C., & VIANELLO, R. (2021). Genome editing via non-homologous end-joining (NHEJ) and ribonucleoproteins (RNP).

X. Holt, N., Wang, J., Kim, K., Friedman, G., Wang, X., Taupin, V., ... & Cannon, P. M. (2010). Human hematopoietic stem/progenitor cells modified by zinc-finger nucleases targeted to CCR5 control HIV-1 in vivo. Nature biotechnology, 28(8), 839-847.

XI. Li, Y., Glass, Z., Huang, M., Chen, Z. Y., & Xu, Q. (2020). Ex vivo cell-based CRISPR/Cas9 genome editing for therapeutic applications. Biomaterials, 234, 119711.

XII. Lee, B. C., Lozano, R. J., & Dunbar, C. E. (2021). Understanding and overcoming adverse consequences of genome editing on hematopoietic stem and progenitor cells. Molecular Therapy, 29(11), 3205-3218.

XIII. Rossant, J. (2018). Gene editing in human development: ethical concerns and practical applications. Development, 145(16), dev150888.

Most read articles by the same author(s)