Impact of Metformin on the Warburg Effect on Cancer Cells

Main Article Content

José Maria Zepeda Torres
Héctor Zúñiga Gazcón
Carolina Covarrubias Castellón
Xchel Iván Campuzano Rodríguez
Félix Osuna Gutiérrez
Luis Adrián Flores Chávez
Carlos Arturo López Romero
Omar De Jesús Dorantes Rodríguez
Grecia Jazmin García Gutiérrez
Miriam Chantal Pérez Díaz
Saulo Gómez de Alba
Leonardo Ramírez Nucamendi

Abstract

It is complex to understand all the mechanisms by which tumor cells use for their survival. The aim of the present review is to propose the mechanisms by which metformin would be beneficial in the context of cancer through the inhibition of the Warburg effect. A literature review of the Warburg effect and the mechanism of action of metformin was carried out to determine a theoretical relationship between metformin consumption and inhibition of tumor cell metabolism. There are several mechanisms through which metformin could antagonize tumor cells. As authors, we consider it of vital importance to know these effects in order to extrapolate them to experimental studies and seek the maximum benefit for patients, using the resources we have to date.

Article Details

How to Cite
Torres, J. M. Z. ., Gazcón, H. Z., Castellón, C. C. ., Rodríguez, X. I. C., Gutiérrez, F. O., Chávez, L. A. F. ., Romero, C. A. L. ., Rodríguez, O. D. J. D. ., Gutiérrez, G. J. G. ., Díaz, M. C. P. ., Alba, S. G. de ., & Nucamendi, L. R. . (2022). Impact of Metformin on the Warburg Effect on Cancer Cells. International Journal of Medical Science and Clinical Research Studies, 2(6), 469–472. https://doi.org/10.47191/ijmscrs/v2-i6-05
Section
Articles

References

I. Herrera-González, N. E., Martínez-García, F., & Mejía-Jiménez, E. (2015). The Warburg effect: the right hand in cancer development. Journal of Medical- Surgical Specialties, 20(2), 171-177.

II. Liberti, M. V., & Locasale, J. W. (2016). The Warburg effect: how does it benefit cancer cells?. Trends in biochemical sciences, 41(3), 211-218.

III. 3. Jia, Y., Ma, Z., Liu, X., Zhou, W., He, S., Xu, X., ... & Tian, K. (2015).

IV. Metformin prevents DMH-induced colorectal cancer in diabetic rats by reversing the warburg effect. Cancer medicine, 4(11), 1730-1741.

V. Rena, G., E. R. Pearson, and K. Sakamoto. 2013. Molecular mechanism of action of metformin: old or new insights? Diabetologia 56:1898-1906.

VI. Burcelin, R. 2014. The antidiabetic gutsy role of metformin uncovered? Gut 63:706-707.

VII. Madiraju, A. K., D. M. Erion, Y. Rahimi, X.-M. Zhang, D. T. Braddock, R. A. Albright, et al. 2014. Metformin suppresses gluconeogenesis by inhibiting mitochondrial glycerophosphate dehydrogenase. Nature 510:542-546.

VIII. Casado Pinna M. (2009). Regulation of gene expression by glucose. Monographs of the Royal National Academy of Pharmacy.

IX. Archetti, M. (2014). Evolutionary dynamics of the Warburg effect: Glycolysis as a collective action problem among cancer cells. Journal of theoretical biology, 341,1-8.

X. Martínez-Ezquerro, J. D., & Herrera, L. A. Angiogenesis: VEGF/VEGFRs as Therapeutic Targets in Cancer Treatment. Instituto Nacional de Cancerología-Instituto de Investigaciones Biomédicas, 83-88.

XI. Marín, A.H (2009). Hypoxia-induced factor-(HIF-1) and glycolysis in tumor cells. Journal of Biochemical Education, 28(2),42-51.

XII. Gonzalez Rengifo, G. F., Gonzales Castañeda, C., Espinosa Guerinoni, D., & Rojas Tubeh, C. (2007). Overexpression of glycolytic pathway enzyme genes in cancer cells. Acta Médica Peruana, 24(3),187-197.

XIII. Archetti, M. (2014). Evolutionary dynamics of the Warburg effect: Glycolysis as a collective action problem among cancer cells. Journal of theoretical biology, 341,1-8.

XIV. Nijsten, M. W., & van Dam, G. M. (2009). Hypothesis: using the Warburg effect against cancer by reducing glucose and providing lactate. Medical hypotheses, 73(1),48-51.

XV. Thorne, J. L., & Campbell, M. J. (2014). Nuclear receptors and the Warburg effect in cancer. International Journal of Cancer.

XVI. Anisimov VN, Berstein LM, Egormin PA, Piskunova TS, Popovich IG, Zabezhinski MA, Kovalenko IG, Poroshina TE, Semenchenko AV, Provinciali M, Re F, Franceschi C. Effect of metformin on lifespan and development of spontaneous mammary tumors in HER-2/neu transgenic mice. Experimental Gerontology 2005;40:685-693.

XVII. Wysocki PJ, Wierusz-Wysocka B. Obesity, hyperinsulinemia, and breast cancer: new targets and a new role for metformin. Expert Reviews of Molecular Diagnostics 2010;10:509-519.

XVIII. Motta AB. Mechanisms involved in the action of metformin in the treatment of polycystic ovary syndrome. Current Pharmaceutical Design 2009;15:3074- 3077.

XIX. Shaw RJ, Lamia KA, Vasquez D, Koo SH, Bardeesy N, Depinho RA, Montminy M, Cantley LC. LKB1 kinase mediates liver glucose homeostasis and the therapeutic effects of metformin. Science 2005;310: 1642-1646.

XX. Huang SC, Erdman SH. Pediatric juvenile polyposis syndromes: an update. Current gastroenterology report 2009;11:211-219.

XXI. Luo Z, Zang M, Guo W. AMPK as a metabolic tumor suppressor: control of metabolism and cell growth. Future Oncology 2010;6:457-470.

XXII. Cao C, Lu S, Kivlin R, Wallin B, Card E, Bagdasarian A, Tamakloe T, Wang WJ, Song X, Chu WM, Kouttab N, Xu A, Wan Y. SIRT1 confers protection against UVBand H2O2-induced cell death through modulation of p53 and JNK in cultured skin keratinocytes. Journal of Cellular and Molecular Medicine 2009;13:3632-3643.

XXIII. Kimura N, Tokunaga C, Dalal S, Richardson C, Yoshino K, Hara K, Kemp BE, Witters LA, Mimura O and Yonezawa K. A possible link between AMP- activated protein kinase (AMPK) and the mammalian target of rapamycin (mTOR) signaling pathway. Genes to Cells 2003;8:65-79.

XXIV. Zakikhani M, Blouin MJ, Piura E, Pollak MN. Metformin and rapamycin have distinct effects on the AKT pathway and proliferation in breast cancer cells. Breast Cancer Research and Treatment 2010. - epub ahead of print. paper reference not ready.

XXV. Han S, Khuri FR, Roman J. Fibronectin stimulates non-small cell lung carcinoma cell growth through activation of Akt/mammalian target of rapamycin/S6 kinase and inactivation of LKB1/AMP-activated protein kinase- activated protein kinase signaling pathways. Cancer Research 2006;66:315- 323.

XXVI. Dowling RJ, Zakikhani M, Fantus IG, Pollak M, Sonenberg N. Metformin inhibits the mammalian target of rapamycin-dependent translation initiation in breast cancer cells. Cancer Research 2007;67:10804-10812.

XXVII. Vázquez-Martin A, Oliveras-Ferraros C, Menendez JA. The antidiabetic drug metformin suppresses HER2 (erbB-2) oncoprotein overexpression through inhibition of the mTOR effector p70S6K1 in human breast carcinoma cells. Cell Cycle 2009;8:88-96.

XXVIII. Ben S, I, Laurent K, Loubat A, Giorgetti-Peraldi S, Colosetti P, Auberger P, Tanti JF, Le Marchand-Brustel Y, Bost F. The antidiabetic drug metformin exerts an antitumor effect in vitro and in vivo through a decrease in cyclin D1 level. Oncogen 2008;27:3576-3586.

XXIX. Kalender A, Selvaraj A, Kim SY, Gulati P, Brule S, Viollet B, Kemp BE, Bardeesy N, Dennis P, Schlager JJ, Marette A, Kozma SC, and Thomas G. AMPK-independent metformin inhibits mTORC1 in a GTPase-dependent manner. Cell Metabolism 2010; 11:390-401.

XXX. Owen MR, Doran E, Halestrap AP. Evidence that metformin exerts its antidiabetic effects through inhibition of mitochondrial respiratory chain complex 1. Biochemical Journal 2000;348 Pt 3:607-614.

XXXI. Salpeter SR, Greyber E, Pasternak GA, Salpeter EE. Risk of fatal and nonfatal lactic acidosis with metformin use in type 2 diabetes mellitus. Cochrane Database Systems Review 2010;4:CD002967.

XXXII. Foretz M, Hebrard S, Leclerc J, Zarrinpashneh E, Soty M, Mithieux G, Sakamoto K, Andreelli F, Viollet B. Metformin inhibits hepatic gluconeogenesis in mice independently of the LKB1/AMPK pathway through a decrease in hepatic energy status. Journal of Clinical Investigation 2010;120:2355-2369.

XXXIII. Samudio I, Kurinna S, Ruvolo P, Korchin B, Kantarjian H, Beran M, Dunner K Jr, Kondo S, Andreeff M, Konopleva M. Inhibition of mitochondrial metabolism by methyl-2-cyano-3,12-dioxooleana-1,9-diene-28-oate induces apoptotic or autophagic cell death in chronic myeloid leukemia cells. Molecular Cancer Therapeutics 2008;7:1130-1139.

XXXIV. Samudio I, Harmancey R, Fiegl M, Kantarjian H, Konopleva M, Korchin B, Kaluarachchi K, Bornmann W, Duvvuri S, Taegtmeyer H, Andreeff M. Pharmacological inhibition of fatty acid oxidation sensitizes human leukemic cells to induction of apoptosis. Journal of Clinical Investigation 2010;120:142- 156.

XXXV. Samudio I, Konopleva M, Pelicano H, Huang P, Frolova O, Bornmann W, Ying Y, Evans R, Contractor R, Andreeff M. A novel mechanism of action of methyl- 2-cyano-3,12 dioxoolean-1 ,9 diene-28-oate (CDDO-Me): direct permeabilization of the inner mitochondrial membrane to inhibit electron transport and induce apoptosis. Molecular Pharmacology 2006;69:1182- 1193.

XXXVI. Samudio I, Fiegl M, Andreeff M. Mitochondrial uncoupling and Warburg effect: molecular basis for reprogramming cancer cell metabolism. Cancer Research 2009;69:2163-2166.

XXXVII. Samudio I, Fiegl M, McQueen T, Clise-Dwyer K, Andreeff M. The Warburg effect in leukemia-estroma cocultures is mediated by mitochondrial uncoupling associated with activation of uncoupling protein 2. Cancer Research 2008;68:5198-5205.

Most read articles by the same author(s)