Antibiotic Susceptibility Patterns and Mutations Associated with Isoniazid and Rifampicin Resistance in Non-Tuberculosis Mycobacterium Isolates from HIV-1 Infected and Uninfected Patients in Western Kenya

Main Article Content

Ronald Wamalwa
Ann Ochayo
Erick Barasa
Jeremiah Zablon
Bernard Guyah
Nathan Shaviya

Abstract

Primarily among immunocompromised people, notably those living with HIV/AIDS, antimicrobial resistance (AMR) among non-tuberculous mycobacteria (NTM) has become a major public health issue. Though the main pathogen in such populations is Mycobacterium tuberculosis, the importance of NTM in causing AMR and complicating treatment plans is becoming more well known. Still, the causes of medication resistance in NTM especially in relation to HIV co-infection remain mostly unknown. This study sought to ascertain the antimicrobial susceptibility patterns of NTM isolates and identify genetic alterations linked with isoniazid and rifampicin resistance among HIV-1 infected and uninfected patients in Western Kenya. Adult HIV-1 infected individuals showing suspected pulmonary tuberculosis were subject to a cross-sectional analytical laboratory analysis. Samples of sputum were gathered; NTM isolates were grown and identified. The broth microdilution technique was used for antimicrobial susceptibility testing. Line probe tests aiming at the rpoβ, katG, and inhA genes helped to find genetic alterations linked to medication resistance. Of 167 participants, 59 NTM isolates were found; most often occurring species were M. intracellularae and M. fortuitum. Observed in 12.1%, 15.2%, and 15.2% of isolates respectively were resistance to isoniazid, rifampicin, and streptomycin. HIV-positive individuals had more frequent mutations in the rpoβ, katG, and inhA genes; medication resistance and HIV status had clear correlation. The study emphasises how different treatment resistance patterns and genetic alterations cause NTM infections in HIV-positive patients to be difficultly managed. Especially in resource-limited environments, these results highlight the importance of customised treatment plans and continuous monitoring of AMR in NTM.

Article Details

How to Cite
Wamalwa, R., Ochayo, A., Barasa, E., Zablon, J., Guyah, B., & Shaviya, N. (2024). Antibiotic Susceptibility Patterns and Mutations Associated with Isoniazid and Rifampicin Resistance in Non-Tuberculosis Mycobacterium Isolates from HIV-1 Infected and Uninfected Patients in Western Kenya. International Journal of Medical Science and Clinical Research Studies, 4(11), 1993–2004. https://doi.org/10.47191/ijmscrs/v4-i11-09
Section
Articles

References

I. Adjemian, J., Olivier, K. N., Seitz, A. E., Holland, S. M., & Prevots, D. R. (2012). Prevalence of Nontuberculous Mycobacterial Lung Disease in U.S. Medicare Beneficiaries. American Journal of Respiratory and Critical Care Medicine, 185(8), 881–886. https://doi.org/10.1164/rccm.201111-2016OC

II. Agizew, T., Basotli, J., Alexander, H., Boyd, R., Letsibogo, G., Auld, A., Nyirenda, S., Tedla, Z., Mathoma, A., Mathebula, U., Pals, S., Date, A., & Finlay, A. (2017). Higher-than-expected prevalence of non-tuberculous mycobacteria in HIV setting in Botswana: Implications for diagnostic algorithms using Xpert MTB/RIF assay. PloS One, 12(12), e0189981. https://doi.org/10.1371/journal.pone.0189981

III. Agizew, T., Boyd, R., Mathebula, U., Mathoma, A., Basotli, J., Serumola, C., Pals, S., Finlay, A., Lekone, P., Rankgoane-Pono, G., Tlhakanelo, T., Chihota, V., & Auld, A. F. (2020). Outcomes of HIV-positive patients with non-tuberculous mycobacteria positive culture who received anti-tuberculous treatment in Botswana: Implications of using diagnostic algorithms without non-tuberculous mycobacteria. PLoS ONE, 15(6), e0234646. https://doi.org/10.1371/journal.pone.0234646

IV. Ahmed, I., Jabeen, K., & Hasan, R. (2013). Identification of non-tuberculous mycobacteria isolated from clinical specimens at a tertiary care hospital: A cross-sectional study. BMC Infectious Diseases, 13(1), 493. https://doi.org/10.1186/1471-2334-13-493

V. Alebel, A., Demant, D., Petrucka, P., & Sibbritt, D. (2022). Effects of undernutrition on opportunistic infections among adults living with HIV on ART in Northwest Ethiopia: Using inverse-probability weighting. PLoS ONE, 17(3), e0264843. https://doi.org/10.1371/journal.pone.0264843

VI. Bor, J., Tanser, F., Newell, M.-L., & Bärnighausen, T. (2012). Nearly Full Employment Recovery Among South African HIV Patients On Antiretroviral Therapy: Evidence From A Large Population Cohort. Health Affairs (Project Hope), 31(7), 10.1377/hlthaff.2012.0407.

https://doi.org/10.1377/hlthaff.2012.0407

VII. Brown-Elliott, B. A., Nash, K. A., & Richard J. Wallace, J. (2012). Antimicrobial Susceptibility Testing, Drug Resistance Mechanisms, and Therapy of Infections with Nontuberculous Mycobacteria. Clinical Microbiology Reviews, 25(3), 545. https://doi.org/10.1128/CMR.05030-11

VIII. Brown-Elliott, B. A., & Woods, G. L. (2019). Antimycobacterial Susceptibility Testing of Nontuberculous Mycobacteria. Journal of Clinical Microbiology, 57(10), e00834-19. https://doi.org/10.1128/JCM.00834-19

IX. Bryant, J. M., Grogono, D. M., Rodriguez-Rincon, D., Everall, I., Brown, K. P., Moreno, P., Verma, D., Hill, E., Drijkoningen, J., Gilligan, P., Esther, C. R., Noone, P. G., Giddings, O., Bell, S. C., Thomson, R., Wainwright, C. E., Coulter, C., Pandey, S., Wood, M. E., … Floto, R. A. (2016). Emergence and spread of a human-transmissible multidrug-resistant nontuberculous mycobacterium. Science (New York, N.Y.), 354(6313), 751–757. https://doi.org/10.1126/science.aaf8156

X. Calcagno, A., Coppola, N., Sarmati, L., Tadolini, M., Parrella, R., Matteelli, A., Riccardi, N., Trezzi, M., Di Biagio, A., Pirriatore, V., Russo, A., Gualano, G., Pontali, E., Surace, L., Falbo, E., Mencarini, J., Palmieri, F., Gori, A., Schiuma, M., … for the Study Group on Mycobacteria (MYGRO) of the Italian Society of Infectious Diseases and Tropical Medicine (SIMIT). (2024). Drugs for treating infections caused by non-tubercular mycobacteria: A narrative review from the study group on mycobacteria of the Italian Society of Infectious Diseases and Tropical Medicine. Infection.

https://doi.org/10.1007/s15010-024-02183-3

XI. Dahl, V. N., Mølhave, M., Fløe, A., van Ingen, J., Schön, T., Lillebaek, T., Andersen, A. B., & Wejse, C. (2022). Global trends of pulmonary infections with nontuberculous mycobacteria: A systematic review. International Journal of Infectious Diseases, 125, 120–131.

https://doi.org/10.1016/j.ijid.2022.10.013

XII. Dao, A., Hirsch, J., Giang, L. M., & Parker, R. G. (2013). Social science research of HIV in Vietnam: A critical review and future directions. Global Public Health, 8(0 1),

1080/17441692.2013.811532. https://doi.org/10.1080/17441692.2013.811532

XIII. Degiacomi, G., Sammartino, J. C., Chiarelli, L. R., Riabova, O., Makarov, V., & Pasca, M. R. (2019). Mycobacterium abscessus, an Emerging and Worrisome Pathogen among Cystic Fibrosis Patients. International Journal of Molecular Sciences, 20(23), 5868.

https://doi.org/10.3390/ijms20235868

XIV. Delghandi, M. R., El-Matbouli, M., & Menanteau-Ledouble, S. (2020). Mycobacteriosis and Infections with Non-tuberculous Mycobacteria in Aquatic Organisms: A Review. Microorganisms, 8(9), 1368.

https://doi.org/10.3390/microorganisms8091368

XV. Faverio, P., Stainer, A., Bonaiti, G., Zucchetti, S. C., Simonetta, E., Lapadula, G., Marruchella, A., Gori, A., Blasi, F., Codecasa, L., Pesci, A., Chalmers, J. D., Loebinger, M. R., & Aliberti, S. (2016). Characterizing Non-Tuberculous Mycobacteria Infection in Bronchiectasis. International Journal of Molecular Sciences, 17(11), 1913. https://doi.org/10.3390/ijms17111913

XVI. Fuseini, H., Gyan, Ben. A., Kyei, G. B., Heimburger, D. C., & Koethe, J. R. (2021). Undernutrition and HIV Infection in Sub-Saharan Africa: Health Outcomes and Therapeutic Interventions. Current HIV/AIDS Reports, 18(2), 87–97. https://doi.org/10.1007/s11904-021-00541-6

XVII. Gandhi, N. R., Moll, A., Sturm, A. W., Pawinski, R., Govender, T., Lalloo, U., Zeller, K., Andrews, J., & Friedland, G. (2006). Extensively drug-resistant tuberculosis as a cause of death in patients co-infected with tuberculosis and HIV in a rural area of South Africa. Lancet (London, England), 368(9547), 1575–1580. https://doi.org/10.1016/S0140-6736(06)69573-1

XVIII. Gopalaswamy, R., Shanmugam, S., Mondal, R., & Subbian, S. (2020). Of tuberculosis and non-tuberculous mycobacterial infections – a comparative analysis of epidemiology, diagnosis and treatment. Journal of Biomedical Science, 27, 74. https://doi.org/10.1186/s12929-020-00667-6

XIX. Griffith, D. E., Aksamit, T., Brown-Elliott, B. A., Catanzaro, A., Daley, C., Gordin, F., Holland, S. M., Horsburgh, R., Huitt, G., Iademarco, M. F., Iseman, M., Olivier, K., Ruoss, S., von Reyn, C. F., Wallace, R. J., Winthrop, K., ATS Mycobacterial Diseases Subcommittee, American Thoracic Society, & Infectious Disease Society of America. (2007). An official ATS/IDSA statement: Diagnosis, treatment, and prevention of nontuberculous mycobacterial diseases. American Journal of Respiratory and Critical Care Medicine, 175(4), 367–416.

https://doi.org/10.1164/rccm.200604-571ST

XX. Gupta, A., Mathuria, J. P., Singh, S. K., Gulati, A. K., & Anupurba, S. (2011). Antitubercular Drug Resistance in Four Healthcare Facilities in North India. Journal of Health, Population, and Nutrition, 29(6), 583–592.

XXI. Hain Lifescience GmbH. GenoTypeMTBDRplus, version 2.0 product insert. & Nehren, Germany. (n.d.). GenoType MTBDRplus | Detection of resistance to rifampicin and isoniazid. Retrieved May 6, 2024, from https://www.hain-lifescience.de/en/products/microbiology/mycobacteria/tuberculosis/genotype-mtbdrplus.html

XXII. Hill, S. V., Hao, J., Newlin-Bradner, M., Long, D. M., Budhwani, H., & Simpson, T. (2024). Re-evaluating the relationship between youth with HIV and BMI in an age of increasing rates of overweight and obese youth. BMC Research Notes, 17(1), 97. https://doi.org/10.1186/s13104-024-06741-8

XXIII. Inderlied, C. B., Young, L. S., & Yamada, J. K. (1987). Determination of in vitro susceptibility of Mycobacterium avium complex isolates to antimycobacterial agents by various methods. Antimicrobial Agents and Chemotherapy, 31(11), 1697–1702. https://doi.org/10.1128/AAC.31.11.1697

XXIV. Isakova, J., Sovkhozova, N., Vinnikov, D., Goncharova, Z., Talaibekova, E., Aldasheva, N., & Aldashev, A. (2018). Mutations of rpoB, katG, inhA and ahp genes in rifampicin and isoniazid-resistant Mycobacterium tuberculosis in Kyrgyz Republic. BMC Microbiology, 18(1), 22. https://doi.org/10.1186/s12866-018-1168-x

XXV. Jing, W., Pang, Y., Zong, Z., Wang, J., Guo, R., Huo, F., Jiang, G., Ma, Y., Huang, H., & Chu, N. (2017). Rifabutin Resistance Associated with Double Mutations in rpoB Gene in Mycobacterium tuberculosis Isolates. Frontiers in Microbiology, 8, 1768. https://doi.org/10.3389/fmicb.2017.01768

XXVI. Johansen, M. D., Herrmann, J.-L., & Kremer, L. (2020). Non-tuberculous mycobacteria and the rise of Mycobacterium abscessus. Nature Reviews. Microbiology, 18(7), 392–407.

https://doi.org/10.1038/s41579-020-0331-1

XXVII. Kaguthi, G., Nduba, V., Murithi, W., & Verver, S. (2019). The Incidence of Non-Tuberculous Mycobacteria in Infants in Kenya. Journal of Tropical Medicine, 2019, e1273235. https://doi.org/10.1155/2019/1273235

XXVIII. Kim, B.-J., Cha, G.-Y., Kim, B.-R., Kook, Y.-H., & Kim, B.-J. (2019). Insights From the Genome Sequence of Mycobacterium paragordonae, a Potential Novel Live Vaccine for Preventing Mycobacterial Infections: The Putative Role of Type VII Secretion Systems for an Intracellular Lifestyle Within Free-Living Environmental Predators. Frontiers in Microbiology, 10, 1524. https://doi.org/10.3389/fmicb.2019.01524

XXIX. Lapinel, N. C., Jolley, S. E., Ali, J., & Welsh, D. A. (2019). Prevalence of non-tuberculous mycobacteria in HIV-infected patients admitted to hospital with pneumonia. The International Journal of Tuberculosis and Lung Disease, 23(4), 491–497. https://doi.org/10.5588/ijtld.18.0336

XXX. Li, G., Pang, H., Guo, Q., Huang, M., Tan, Y., Li, C., Wei, J., Xia, Y., Jiang, Y., Zhao, X., Liu, H., Zhao, L.-L., Liu, Z., Xu, D., & Wan, K. (2017). Antimicrobial susceptibility and MIC distribution of 41 drugs against clinical isolates from China and reference strains of nontuberculous mycobacteria. International Journal of Antimicrobial Agents, 49(3), 364–374.

https://doi.org/10.1016/j.ijantimicag.2016.10.024

XXXI. Lopez-Luis, B. A., Sifuentes-Osornio, J., Pérez-Gutiérrez, M. T., Chávez-Mazari, B., Bobadilla-del-Valle, M., & Ponce-de-León, A. (2020). Nontuberculous mycobacterial infection in a tertiary care center in Mexico, 2001–2017. The Brazilian Journal of Infectious Diseases, 24(3), 213–220. https://doi.org/10.1016/j.bjid.2020.04.012

XXXII. Luthra, S., Rominski, A., & Sander, P. (2018). The Role of Antibiotic-Target-Modifying and Antibiotic-Modifying Enzymes in Mycobacterium abscessus Drug Resistance. Frontiers in Microbiology, 9.

https://doi.org/10.3389/fmicb.2018.02179

XXXIII. Malvy, D., Thiébaut, R., Marimoutou, C., Dabis, F., & Clinique Du Sida En Aquitaine, G. D. (2001). Weight loss and body mass index as predictors of HIV disease progression to AIDS in adults. Aquitaine cohort, France, 1985-1997. Journal of the American College of Nutrition, 20(6), 609–615.

XXXIV. Martinez, S. S., Campa, A., Bussmann, H., Moyo, S., Makhema, J., Huffman, F. G., Williams, O. D., Essex, M., Marlink, R., & Baum, M. K. (2016). Effect of BMI and fat mass on HIV disease progression in HIV-infected, antiretroviral treatment-naïve adults in Botswana. The British Journal of Nutrition, 115(12), 2114–2121. https://doi.org/10.1017/S0007114516001409

XXXV. Maya, T. G., Komba, E. V., Mensah, G. I., Mbelele, P. M., Mpagama, S. G., Mfinanga, S. G., Addo, K. K., & Kazwala, R. R. (2022). Drug susceptibility profiles and factors associated with non-tuberculous mycobacteria species circulating among patients diagnosed with pulmonary tuberculosis in Tanzania. PLoS ONE, 17(3). https://doi.org/10.1371/journal.pone.0265358

XXXVI. McMaughan, D. J., Oloruntoba, O., & Smith, M. L. (2020). Socioeconomic Status and Access to Healthcare: Interrelated Drivers for Healthy Aging. Frontiers in Public Health, 8, 231. https://doi.org/10.3389/fpubh.2020.00231

XXXVII. Miotto, P., Zhang, Y., Cirillo, D. M., & Yam, W. C. (2018). Drug resistance mechanisms and drug susceptibility testing for tuberculosis. Respirology, 23(12), 1098–1113. https://doi.org/10.1111/resp.13393

XXXVIII. Mokrousov, I., Narvskaya, O., Otten, T., Limeschenko, E., Steklova, L., & Vyshnevskiy, B. (2002). High prevalence of KatG Ser315Thr substitution among isoniazid-resistant Mycobacterium tuberculosis clinical isolates from northwestern Russia, 1996 to 2001. Antimicrobial Agents and Chemotherapy, 46(5), 1417–1424. https://doi.org/10.1128/AAC.46.5.1417-1424.2002

XXXIX. Morgado, S. M., Marín, M. A., Freitas, F. S., Fonseca, E. L., & Vicente, A. C. P. (2017). Complete plasmid sequence carrying type IV-like and type VII secretion systems from an atypical mycobacteria strain. Memorias Do Instituto Oswaldo Cruz, 112(7), 514–516. https://doi.org/10.1590/0074-02760160546

XL. Mpaka-Mbatha, M. N., Naidoo, P., Islam, M. M., Singh, R., & Mkhize-Kwitshana, Z. L. (2022). Anaemia and Nutritional Status during HIV and Helminth Coinfection among Adults in South Africa. Nutrients, 14(23), 4970. https://doi.org/10.3390/nu14234970

XLI. Mullen, B., Houpt, E. R., Colston, J., Becker, L., Johnson, S., Young, L., Hearn, J., Falkinham, J., & Heysell, S. K. (2024). Geographic Variation and Environmental Predictors of Nontuberculous Mycobacteria in Laboratory Surveillance, Virginia, USA, 2021–2023—Volume 30, Number 3—March 2024—Emerging Infectious Diseases journal—CDC. https://doi.org/10.3201/eid3003.231162

XLII. Munita, J. M., & Arias, C. A. (2016). Mechanisms of Antibiotic Resistance. Microbiology Spectrum, 4(2), 10.1128/microbiolspec.VMBF-0016–2015. https://doi.org/10.1128/microbiolspec.VMBF-0016-2015

XLIII. Naidoo, P., van Niekerk, M., du Toit, E., Beyers, N., & Leon, N. (2015). Pathways to multidrug-resistant tuberculosis diagnosis and treatment initiation: A qualitative comparison of patients’ experiences in the era of rapid molecular diagnostic tests. BMC Health Services Research, 15(1), 488. https://doi.org/10.1186/s12913-015-1145-0

XLIV. Narayanan, S., Das, S., Garg, R., Hari, L., Rao, V. B., Frieden, T. R., & Narayanan, P. R. (2002). Molecular Epidemiology of Tuberculosis in a Rural Area of High Prevalence in South India: Implications for Disease Control and Prevention. Journal of Clinical Microbiology, 40(12), 4785–4788. https://doi.org/10.1128/JCM.40.12.4785-4788.2002

XLV. Narimisa, N., Bostanghadiri, N., Goodarzi, F., Razavi, S., & Jazi, F. M. (2024). Prevalence of Mycobacterium kansasii in clinical and environmental isolates, a systematic review and meta-analysis. Frontiers in Microbiology, 15, 1321273. https://doi.org/10.3389/fmicb.2024.1321273

XLVI. Nasiri, M. J., Haeili, M., Ghazi, M., Goudarzi, H., Pormohammad, A., Imani Fooladi, A. A., & Feizabadi, M. M. (2017). New Insights in to the Intrinsic and Acquired Drug Resistance Mechanisms in Mycobacteria. Frontiers in Microbiology, 8.

https://doi.org/10.3389/fmicb.2017.00681

XLVII. Nessar, R., Cambau, E., Reyrat, J. M., Murray, A., & Gicquel, B. (2012). Mycobacterium abscessus: A new antibiotic nightmare. The Journal of Antimicrobial Chemotherapy, 67(4), 810–818. https://doi.org/10.1093/jac/dkr578

XLVIII. Ochayo, A., Wamalwa, R., Barasa, E., Zablon, J., Sowayi, G., Were, T., Gitonga, G., & Shaviya, N. (2023). Prevalence of Non-Tuberculosis Mycobacterium Pulmonary Disease in HIV-1 Patients with Presumptive Pulmonary Tuberculosis in Western Kenya. Ethiopian Journal of Health Sciences, 33(5), Article 5. https://doi.org/10.4314/ejhs.v33i5.3

XLIX. Ogwang, M. O., Imbuga, M., Ngugi, C., Mutharia, L., Magoma, G., & Diero, L. (2021). Distribution patterns of drug resistance Mycobacterium tuberculosis among HIV negative and positive tuberculosis patients in Western Kenya. BMC Infectious Diseases, 21, 1175. https://doi.org/10.1186/s12879-021-06887-x

L. Orgeur, M., Sous, C., Madacki, J., & Brosch, R. (2024). Evolution and emergence of Mycobacterium tuberculosis. FEMS Microbiology Reviews, 48(2), fuae006. https://doi.org/10.1093/femsre/fuae006

LI. Peters, J. S., Andrews, J. R., Hatherill, M., Hermans, S., Martinez, L., Schurr, E., van der Heijden, Y., Wood, R., Rustomjee, R., & Kana, B. D. (2019). Advances in the understanding of Mycobacterium tuberculosis transmission in HIV-endemic settings. The Lancet. Infectious Diseases, 19(3), e65–e76. https://doi.org/10.1016/S1473-3099(18)30477-8

LII. Piatek, A. S., Telenti, A., Murray, M. R., El-Hajj, H., Jacobs, W. R., Kramer, F. R., & Alland, D. (2000). Genotypic analysis of Mycobacterium tuberculosis in two distinct populations using molecular beacons: Implications for rapid susceptibility testing. Antimicrobial Agents and Chemotherapy, 44(1), 103–110. https://doi.org/10.1128/AAC.44.1.103-110.2000

LIII. Prammananan, T., Cheunoy, W., Taechamahapun, D., Yorsangsukkamol, J., Phunpruch, S., Phdarat, P., Leechawengwongs, M., & Chaiprasert, A. (2008). Distribution of rpoB mutations among multidrug-resistant Mycobacterium tuberculosis (MDRTB) strains from Thailand and development of a rapid method for mutation detection. Clinical Microbiology and Infection : The Official Publication of the European Society of Clinical Microbiology and Infectious Diseases, 14, 446–453.

https://doi.org/10.1111/j.1469-0691.2008.01951.x

LIV. Recchia, D., Stelitano, G., Stamilla, A., Gutierrez, D. L., Degiacomi, G., Chiarelli, L. R., & Pasca, M. R. (2023). Mycobacterium abscessus Infections in Cystic Fibrosis Individuals: A Review on Therapeutic Options. International Journal of Molecular Sciences, 24(5), 4635. https://doi.org/10.3390/ijms24054635

LV. Rockwood, N., Abdullahi, L. H., Wilkinson, R. J., & Meintjes, G. (2015). Risk Factors for Acquired Rifamycin and Isoniazid Resistance: A Systematic Review and Meta-Analysis. PLoS ONE, 10(9), e0139017. https://doi.org/10.1371/journal.pone.0139017

LVI. Seifert, M., Catanzaro, D., Catanzaro, A., & Rodwell, T. C. (2015). Genetic mutations associated with isoniazid resistance in Mycobacterium tuberculosis: A systematic review. PloS One, 10(3), e0119628.

https://doi.org/10.1371/journal.pone.0119628

LVII. Sharma, S. K., & Upadhyay, V. (2020). Epidemiology, diagnosis & treatment of non-tuberculous mycobacterial diseases. The Indian Journal of Medical Research, 152(3), 185–226. https://doi.org/10.4103/ijmr.IJMR_902_20

LVIII. Singh, S., Verma, T., Khamari, B., Bulagonda, E. P., Nandi, D., & Umapathy, S. (2023). Antimicrobial Resistance Studies Using Raman Spectroscopy on Clinically Relevant Bacterial Strains. Analytical Chemistry. https://doi.org/10.1021/acs.analchem.3c01453

LIX. Spies, F. S., Almeida da Silva, P. E., Ribeiro, M. O., Rossetti, M. L., & Zaha, A. (2008). Identification of Mutations Related to Streptomycin Resistance in Clinical Isolates of Mycobacterium tuberculosis and Possible Involvement of Efflux Mechanism. Antimicrobial Agents and Chemotherapy, 52(8), 2947–2949.

https://doi.org/10.1128/AAC.01570-07

LX. Tagini, F., Pillonel, T., Bertelli, C., Jaton, K., & Greub, G. (2021). Pathogenic Determinants of the Mycobacterium kansasii Complex: An Unsuspected Role for Distributive Conjugal Transfer. Microorganisms, 9(2), 348.

https://doi.org/10.3390/microorganisms9020348

LXI. Thomas, R., Friebel, R., Barker, K., Mwenge, L., Kanema, S., Vanqa, N., Harper, A., Bell-Mandla, N., Smith, P. C., Floyd, S., Bock, P., Ayles, H., Fidler, S., Hayes, R., & Hauck, K. (2019). Work and home productivity of people living with HIV in Zambia and South Africa. AIDS (London, England), 33(6), 1063–1071.

https://doi.org/10.1097/QAD.0000000000002160

LXII. Winthrop, K. L., Marras, T. K., Adjemian, J., Zhang, H., Wang, P., & Zhang, Q. (2020). Incidence and Prevalence of Nontuberculous Mycobacterial Lung Disease in a Large U.S. Managed Care Health Plan, 2008–2015. Annals of the American Thoracic Society.

https://doi.org/10.1513/AnnalsATS.201804-236OC

LXIII. Yeung, M. W., Khoo, E., Brode, S. K., Jamieson, F. B., Kamiya, H., Kwong, J. C., Macdonald, L., Marras, T. K., Morimoto, K., & Sander, B. (2016). Health-related quality of life, comorbidities and mortality in pulmonary nontuberculous mycobacterial infections: A systematic review. Respirology (Carlton, Vic.), 21(6), 1015–1025. https://doi.org/10.1111/resp.12767