Advancements in Gene Therapy and Stem Cell Applications in Interventional Cardiology: A Comprehensive Review
Main Article Content
Abstract
Gene therapy and stem cell applications represent the forefront of innovative treatments in interventional cardiology, offering potential solutions for previously intractable cardiovascular conditions. This review explores the current advancements, mechanisms, and clinical implications of gene therapy and stem cell technologies in the treatment of ischemic heart disease, heart failure, and myocardial infarction. The integration of these modalities into interventional procedures has the potential to revolutionize patient outcomes by promoting myocardial repair, enhancing angiogenesis, and improving cardiac function. Despite promising preclinical and early clinical results, challenges such as delivery methods, immunogenicity, and long-term efficacy remain. This article provides a detailed analysis of the latest research, clinical trials, and future directions in the field, highlighting the transformative potential and obstacles that need to be addressed for widespread clinical adoption.
Article Details
This work is licensed under a Creative Commons Attribution 4.0 International License.
References
I. Abdelwahid E., Kalvelyte A., Stulpinas A., de Carvalho K.A.T., Guarita-Souza L.C., Foldes G. 2016. Stem cell death and survival in heart regeneration and repair. Apoptosis, 21(3): 252–268.
II. Abu-El-Rub E., Sequiera G.L., Sareen N., Yan W., Moudgil M., Sabbir M.G., Dhingra S. 2019. Hypoxia-induced 26S proteasome dysfunction increases immunogenicity of mesenchymal stem cells. Cell Death Dis. 10(2):
III. Abu-El-Rub E., Sareen N., Sequiera G.L., Ammar H.I., Yan W., ShamsEldeen A.M., 2020. Hypoxia-induced increase in Sug1 leads to poor post-transplantation survival of allogeneic mesenchymal stem cells. FASEB J. 34(9): 12860–12876.
IV. Adamiak M., Cheng G., Bobis-Wozowicz S., Zhao L., Kedracka-Krok S., Samanta A., 2018. Induced pluripotent stem cell (iPSC)–derived extracellular vesicles are safer and more effective for cardiac repair than iPSCs. Circ. Res. 122(2): 296–309.
V. Ammar H.I., Sequiera G.L., Nashed M.B., Ammar R.I., Gabr H.M., Elsayed H.E., 2015. Comparison of adipose tissue- and bone marrow-derived mesenchymal stem cells for alleviating doxorubicin-induced cardiac dysfunction in diabetic rats. Stem Cell Res. Ther. 6: 148.
VI. Ando M., Nishimura T., Yamazaki S., Yamaguchi T., Kawana-Tachikawa A., Hayama T., 2015. A safeguard system for induced pluripotent stem cell-derived rejuvenated T cell therapy. Stem Cell Rep. 5(4): 597–608.
VII. Antebi B., Rodriguez L.A., Walker K.P., Asher A.M., Kamucheka R.M., Alvarado L., 2018. Short-term physiological hypoxia potentiates the therapeutic function of mesenchymal stem cells. Stem Cell Res. Ther. 9(1): 265.
VIII. Atashi F., Jaconi M.E.E., Pittet-Cuénod B., Modarressi A. 2015. Autologous platelet-rich plasma: a biological supplement to enhance adipose-derived mesenchymal stem cell expansion. Tissue Eng. C Methods, 21(3): 253–262.
IX. Bagno L.L., Carvalho D., Mesquita F., Louzada R.A., Andrade B., Kasai-Brunswick T.H., 2016. Sustained IGF-1 secretion by adipose-derived stem cells improves infarcted heart function. Cell Transplant. 25(9): 1609–1622.
X. Bartolucci J., Verdugo F.J., González P.L., Larrea R.E., Abarzua E., Goset C., 2017. Safety and efficacy of the intravenous infusion of umbilical cord mesenchymal stem cells in patients with heart failure: a phase 1/2 randomized controlled trial (RIMECARD trial [randomized clinical trial of intravenous infusion umbilical cord mesenchymal stem cells on cardiopathy]). Circ. Res. 121(10): 1192–1204.
XI. Batalov I., Feinberg A.W. 2015. Differentiation of cardiomyocytes from human pluripotent stem cells using monolayer culture. Biomark. Insights, 10(Suppl 1): 71–76.
XII. Batalov I., Jallerat Q., Kim S., Bliley J., Feinberg A.W. 2021. Engineering aligned human cardiac muscle using developmentally inspired fibronectin micropatterns. Sci. Rep. 11(1): 11502.
XIII. Bauer S.R. 2004. Stem cell-based products in medicine: FDA regulatory considerations. In Handbook of stem cells. pp. 805–814.
XIV. Bilewska A., Abdullah M., Mishra R., Musialek P., Gunasekaran M., Saha P., 2022. Safety and efficacy of transcoronary transfer of human neonatal stem cells to ischemic myocardium using a novel cell-delivery system (CIRCULATE catheter) in swine model of acute myocardial infarction. Postepy Kardiol. Interwencyjnej, 18(4): 431–438.
XV. Blinova K., Schocken D., Patel D., Daluwatte C., Vicente J., Wu J.C., Strauss D.G. 2019. Clinical trial in a dish: personalized stem cell-derived cardiomyocyte assay compared with clinical trial results for two QT-prolonging drugs. Clin. Transl. Sci. 12(6): 687–697.
XVI. Bobi J., Solanes N., Fernández-Jiménez R., Galán-Arriola C., Dantas A.P., Fernández-Friera L., 2017. Intracoronary administration of allogeneic adipose tissue-derived mesenchymal stem cells improves myocardial perfusion but not left ventricle function, in a translational model of acute myocardial infarction. J. Am. Heart Assoc. 6(5): e005771.
XVII. Boomsma R.A., Swaminathan P.D., Geenen D.L. 2007. Intravenously injected mesenchymal stem cells home to viable myocardium after coronary occlusion and preserve systolic function without altering infarct size. Int. J. Cardiol. 122(1): 17–28.
XVIII. Breitbach M., Bostani T., Roell W., Xia Y., Dewald O., Nygren J.M., 2007. Potential risks of bone marrow cell transplantation into infarcted hearts. Blood, 110(4): 1362–1369.
XIX. Brown P.T., Handorf A.M., Jeon W.B., Li W.-J. 2013. Stem cell-based tissue engineering approaches for musculoskeletal regeneration. Curr. Pharmaceut. Design, 19(19): 3429–3445.