The Inflammation Spectrum of Monocytes in Relation to Obesity and Severity of Type 2 Diabetes (T2D), A Case-Control Study

Main Article Content

Jorge Pérez-Galarza
Lucy Baldeón R
Fernando Sempértegui O
Behiye Özcan
Eric JG Sijbrands
Francisco Barrera-Guarderas
Harm de Wit
Anne Marie Wijkhuijs
Hemmo A. Drexhage

Abstract

Introduction. Increased monocyte and macrophage inflammatory state and pro-inflammatory cytokine production are linked to type 2 diabetes (T2D).


Research design and Methods. This is a case-control study aimed to examine the expression of 23 monocyte genes related to inflammation, adhesion, and repair in individuals with mild (mean HbA1c 7.3%, illness duration 5.6 years) and severe type 2 diabetes (mean HbA1c 8.4%, disease duration 14.2 years) compared also with lean and obese controls. In addition, we determined a set of serum inflammatory cytokines and growth factors.


Results. The monocytes of mild T2D patients (who were in general overweight/obese) showed overexpression of a subset of genes related to adhesion (CD9), vascular repair and growth (HGF). The monocytes of the severe T2D patients showed in contrast an upregulation of many of the pro-inflammatory genes, without a significantly increased expression of the repair gene HGF and the adhesion gene CD9. Serum cytokine expression in the severe T2D patients supported the increased inflammatory state of the patients showing high levels of IL-6, IL-1β, and TNF-α.


Conclusions. This study, therefore, shows a pro-inflammatory gene expression profile of monocytes of severe T2D patients, while patients with mild T2D did not show such monocyte profile.

Article Details

How to Cite
Jorge Pérez-Galarza, Lucy Baldeón R, Fernando Sempértegui O, Behiye Özcan, Eric JG Sijbrands, Francisco Barrera-Guarderas, Harm de Wit, Anne Marie Wijkhuijs, & Hemmo A. Drexhage. (2024). The Inflammation Spectrum of Monocytes in Relation to Obesity and Severity of Type 2 Diabetes (T2D), A Case-Control Study. International Journal of Medical Science and Clinical Research Studies, 4(02), 224–234. https://doi.org/10.47191/ijmscrs/v4-i02-12
Section
Articles

References

I. F. Zatterale et al., “Chronic Adipose Tissue Inflammation Linking Obesity to Insulin Resistance and Type 2 Diabetes,” Frontiers in Physiology, vol. 10. p. 1607, 2020, doi: 10.3389/fphys.2019.01607.

II. E. Stolarczyk, “Adipose tissue inflammation in obesity: a metabolic or immune response?,” Curr. Opin. Pharmacol., vol. 37, pp. 35–40, 2017, doi: 10.1016/j.coph.2017.08.006.

III. L. Baldeón R et al., "Decreased serum level of miR-146a as a sign of chronic inflammation in type 2 diabetic patients.," PLoS One, vol. 9, no. 12, p. e115209, 2014, doi: 10.1371/journal.pone.0115209.

IV. R. Barazzoni, G. Gortan Cappellari, M. Ragni, and E. Nisoli, “Insulin resistance in obesity: an overview of fundamental alterations,” Eating and Weight Disorders, vol. 23, no. 2. pp. 149–157, 2018, doi: 10.1007/s40519-018-0481-6.

V. M. A. Creager, T. F. Lüscher, F. Cosentino, and J. A. Beckman, “Diabetes and vascular disease. Pathophysiology, clinical consequences, and medical therapy: Part I,” Circulation, vol. 108, no. 12, pp. 1527–1532, 2003,

doi: 10.1161/01.CIR.0000091257.27563.32.

VI. J. Rehman, J. Li, C. M. Orschell, and K. L. March, “Peripheral Blood ‘Endothelial Progenitor Cells’ Are Derived From Monocyte/Macrophages and Secrete Angiogenic Growth Factors,” Circulation, vol. 107, no. 8, pp. 1164–1169, Mar. 2003, doi: 10.1161/01.CIR.0000058702.69484.A0.

VII. C. J. M. Loomans et al., “Angiogenic murine endothelial progenitor cells are derived from a myeloid bone marrow fraction and can be identified by endothelial NO synthase expression,” Arterioscler. Thromb. Vasc. Biol., vol. 26, no. 8, pp. 1760–1767, Aug. 2006,

doi: 10.1161/01.ATV.0000229243.49320.c9.

VIII. G. C. Schatteman, M. Dunnwald, and C. Jiao, “Biology of bone marrow-derived endothelial cell precursors,” Am. J. Physiol. - Hear. Circ. Physiol., vol. 292, no. 1, Jan. 2007, doi: 10.1152/AJPHEART.00662.2006/ASSET/IMAGES/LARGE/ZH40010771900002.JPEG.

IX. C. J. M. Loomans et al., “Differentiation of Bone Marrow–Derived Endothelial Progenitor Cells Is Shifted into a Proinflammatory Phenotype by Hyperglycemia,” Mol. Med., vol. 15, no. 5–6, p. 152, May 2009,

doi: 10.2119/MOLMED.2009.00032.

X. A. Petrelli, R. Di Fenza, M. Carvello, F. Gatti, A. Secchi, and P. Fiorina, “Strategies to Reverse Endothelial Progenitor Cell Dysfunction in Diabetes,” Exp. Diabetes Res., vol. 2012, 2012, doi: 10.1155/2012/471823.

XI. K. Aschbacher et al., “Higher fasting glucose levels are associated with reduced circulating angiogenic cell migratory capacity among healthy individuals,” Am. J. Cardiovasc. Dis., vol. 2, no. 1, p. 12, 2012, Accessed: Feb. 07, 2022. [Online]. Available: /pmc/articles/PMC3257152/.

XII. L. Baldeón Rojas et al., “Study on inflammation-related genes and microRNAs, with special emphasis on the vascular repair factor HGF and miR-574-3p, in monocytes and serum of patients with T2D,” Diabetol. Metab. Syndr., vol. 8, no. 1, p. 6, 2016, doi: 10.1186/s13098-015-0113-5.

XIII. M. Bouchentouf et al., “Monocyte derivatives promote angiogenesis and myocyte survival in a model of myocardial infarction,” Cell Transplant., vol. 19, no. 4, pp. 369–386, 2010, doi: 10.3727/096368909X484266.

XIV. E. Van’t Riet et al., “The Diabetes Pearl: Diabetes biobanking in the Netherlands,” BMC Public Health, vol. 12, no. 1, pp. 2–7, 2012, doi: 10.1186/1471-2458-12-949.

XV. J. Pérez-Galarza et al., “Cronicon EC DIABETES AND METABOLIC RESEARCH EC DIABETES AND METABOLIC RESEARCH Pro-Inflammatory Cytokines, Leptin and HGF in Obese and Type 2 Diabetic Patients.” Accessed: Jan. 20, 2021. [Online]. Available:

http://graphpad.com/support/faqid/1598/.

XVI. “Diagnosis and classification of diabetes mellitus,” Diabetes Care, vol. 36 Suppl 1, no. Suppl 1, Jan. 2013, doi: 10.2337/DC13-S067.

XVII. E. M. Knijff et al., “A relative resistance of T cells to dexamethasone in bipolar disorder,” Bipolar Disord., vol. 8, no. 6, pp. 740–750, Dec. 2006, doi: 10.1111/J.1399-5618.2006.00359.X.

XVIII. P. A. Lyons et al., “Microarray analysis of human leucocyte subsets: the advantages of positive selection and rapid purification,” BMC Genomics, vol. 8, Mar. 2007, doi: 10.1186/1471-2164-8-64.

XIX. E. Beillard et al., “Evaluation of candidate control genes for diagnosis and residual disease detection in leukemic patients using ‘real-time’ quantitative reverse-transcriptase polymerase chain reaction (RQ-PCR) - A Europe against cancer program,” Leukemia, vol. 17, no. 12, pp. 2474–2486, 2003, doi: 10.1038/sj.leu.2403136.

XX. J. Pérez-Galarza et al., “Prevalence of overweight and metabolic syndrome, and associated sociodemographic factors among adult Ecuadorian populations: the ENSANUT-ECU study,” J. Endocrinol. Invest., 2020, doi: 10.1007/s40618-020-01267-9.

XXI. F. Sempértegui et al., “Metabolic syndrome in elderly living in marginal periurban communities in Quito, Ecuador,” Public Health Nutr., vol. 14, no. 5, p. 758, May 2011,

doi: 10.1017/S1368980010002636.

XXII. R. Lucy Baldeón et al., “Type 2 Diabetes Monocyte MicroRNA and mRNA Expression: Dyslipidemia Associates with Increased Differentiation-Related Genes but Not Inflammatory Activation,” PLoS One, vol. 10, no. 6, p. e0129421, Jun. 2015, doi: 10.1371/JOURNAL.PONE.0129421.

XXIII. M. S. Burhans, D. K. Hagman, J. N. Kuzma, K. A. Schmidt, and M. Kratz, “Contribution of adipose tissue inflammation to the development of type 2 diabetes mellitus,” Compr. Physiol., vol. 9, no. 1, pp. 1–58, Jan. 2019, doi: 10.1002/cphy.c170040.

XXIV. G. S. Hotamisligil, N. S. Shargill, and B. M. Spiegelman, “Adipose expression of tumor necrosis factor-alpha: direct role in obesity-linked insulin resistance,” Science (80-. )., 1993, doi: 10.1126/science.7678183.

XXV. P. Peraldi, G. S. Hotamisligil, W. a Buurman, M. F. White, and B. M. Spiegelman, “Tumor necrosis factor (TNF)-alpha inhibits insulin signaling through stimulation of the p55 TNF receptor and activation of sphingomyelinase.,” J. Biol. Chem., 1996, doi: 10.1074/jbc.271.22.13018.

XXVI. M. H. M. Barros, F. Hauck, J. H. Dreyer, B. Kempkes, and G. Niedobitek, “Macrophage polarisation: An immunohistochemical approach for identifying M1 and M2 macrophages,” PLoS One, vol. 8, no. 11, pp. 1–11, 2013, doi: 10.1371/journal.pone.0080908.

XXVII. P. Sartipy and D. J. Loskutoff, “Monocyte chemoattractant protein 1 in obesity and insulin resistance,” Proc. Natl. Acad. Sci. U. S. A., vol. 100, no. 12, pp. 7265–7270, 2003, doi: 10.1073/pnas.1133870100.

XXVIII. K. T. Uysal, S. M. Wiesbrock, and G. S. Hotamisligil, “Functional analysis of tumor necrosis factor (TNF) receptors in TNF-α- mediated insulin resistance in genetic obesity”, Endocrinology, vol. 139, no. 12, pp. 4832–4838, 1998, doi: 10.1210/endo.139.12.6337.

XXIX. M. Laimer et al., “Markers of chronic inflammation and obesity: a prospective study on the reversibility of this association in middle aged women undergoing weight loss by surgical intervention.,” Int. J. Obes. Relat. Metab. Disord., vol. 26, no. 5, pp. 659–62, 2002, doi: 10.1038/sj.ijo.0801970.