Hypovolemic shock Hypovolemic Shock: How Does Lactic Acid Affect the Heart?

Main Article Content

Dra. Leidy Diana Imbachi Imbachi
Dr. Marco Antonio Medina Ortega
Dr. Nataly Vanesa Pérez Martínez
Dra. Maira Alejandra Guayambuco Medina
Dr. Jhan Sebastian Saavedra Torres

Abstract

Hypovolemic shock is due to a critical loss in the effective circulating blood volume with systemic hypoperfusion. If left untreated, hypovolemic shock can lead to ischemic injury of vital organs, leading to multi-system organ failure and death. Hypovolemic shock is a potentially life-threatening condition (1,2). There are five causes of hypovolemic shock: hemorrhage, trauma, surgical intervention, burns, and fluid loss caused by vomiting or diarrhea. This woman was involved in a motor vehicle accident, which resulted in a traumatic crash (2,3). This was caused by blood loss to the abdomen, as the physical examination suggested (3). Early recognition and appropriate management are essential. Hypovolemic shock results from depletion of intravascular volume, whether by extracellular fluid loss or blood loss (1,2). The pre-shock stage is characterized by compensatory mechanisms with increased sympathetic tone resulting in increased heart rate, increased cardiac contractility, and peripheral vasoconstriction (2,3).

Article Details

How to Cite
Dra. Leidy Diana Imbachi Imbachi, Dr. Marco Antonio Medina Ortega, Dr. Nataly Vanesa Pérez Martínez, Dra. Maira Alejandra Guayambuco Medina, & Saavedra Torres, D. J. S. . (2024). Hypovolemic shock Hypovolemic Shock: How Does Lactic Acid Affect the Heart? . International Journal of Medical Science and Clinical Research Studies, 4(02), 294–296. https://doi.org/10.47191/ijmscrs/v4-i02-23
Section
Articles

References

I. Vincent, J. L., & De Backer, D. (2013). Circulatory shock. The New England journal of medicine, 369(18), 1726–1734.

https://doi.org/10.1056/NEJMra1208943

II. Cannon J. W. (2018). Hemorrhagic Shock. The New England journal of medicine, 378(4), 370–379. https://doi.org/10.1056/NEJMra1705649

III. Lazzeri C, Valente S, Chiostri M, Gensini GF. Clinical significance of lactate in acute cardiac patients. World J Cardiol. 2015 Aug 26;7(8):483-9. doi: 10.4330/wjc.v7.i8.483. PMID: 26322188; PMCID: PMC4549782.

IV. Levy, B., Mansart, A., Montemont, C., Gibot, S., Mallie, J. P., Regnault, V., Lecompte, T., & Lacolley, P. (2007). Myocardial lactate deprivation is associated with decreased cardiovascular performance, decreased myocardial energetics, and early death in endotoxic shock. Intensive care medicine, 33(3), 495–502. https://doi.org/10.1007/s00134-006-0523-9

V. Barbee, R. W., Kline, J. A., & Watts, J. A. (2000). Depletion of lactate by dichloroacetate reduces cardiac efficiency after hemorrhagic shock. Shock (Augusta, Ga.), 14(2), 208–214.

https://doi.org/10.1097/00024382-200014020-00022

VI. Revelly, J. P., Tappy, L., Martinez, A., Bollmann, M., Cayeux, M. C., Berger, M. M., & Chioléro, R. L. (2005). Lactate and glucose metabolism in severe sepsis and cardiogenic shock. Critical care medicine, 33(10), 2235–2240.

https://doi.org/10.1097/01.ccm.0000181525.99295.8f

VII. Kimmoun, A., Novy, E., Auchet, T. et al. Hemodynamic consequences of severe lactic acidosis in shock states: from bench to bedside. Crit Care 19, 175 (2016).

https://doi.org/10.1186/s13054-015-0896-7

VIII. Matejovic, M., Radermacher, P., & Fontaine, E. (2007). Lactate in shock: a high-octane fuel for the heart?. Intensive care medicine, 33(3), 406–408. https://doi.org/10.1007/s00134-006-0524-8

IX. Kline, J. A., Maiorano, P. C., Schroeder, J. D., Grattan, R. M., Vary, T. C., & Watts, J. A. (1997). Activation of pyruvate dehydrogenase improves heart function and metabolism after hemorrhagic shock. Journal of molecular and cellular cardiology, 29(9), 2465–2474.

https://doi.org/10.1006/jmcc.1997.0483

X. Levy, B., Sadoune, L. O., Gelot, A. M., Bollaert, P. E., Nabet, P., & Larcan, A. (2000). Evolution of lactate/pyruvate and arterial ketone body ratios in the early course of catecholamine-treated septic shock. Critical care medicine, 28(1), 114–119. https://doi.org/10.1097/00003246-200001000-00019

XI. Morris, C. G., & Low, J. (2008). Metabolic acidosis in the critically ill: part 1. Classification and pathophysiology. Anaesthesia, 63(3), 294–301. https://doi.org/10.1111/j.1365-2044.2007.05370.x

XII. Daniel, A. M., Taylor, M. E., Kapadia, B., & MacLean, L. D. (1983). Metabolism of prolonged shock. Advances in shock research, 9, 19–30.

XIII. Chioléro, R. L., Revelly, J. P., Leverve, X., Gersbach, P., Cayeux, M. C., Berger, M. M., & Tappy, L. (2000). Effects of cardiogenic shock on lactate and glucose metabolism after heart surgery. Critical care medicine, 28(12), 3784–3791. https://doi.org/10.1097/00003246-200012000-00002

XIV. Revelly, J. P., Tappy, L., Martinez, A., Bollmann, M., Cayeux, M. C., Berger, M. M., & Chioléro, R. L. (2005). Lactate and glucose metabolism in severe sepsis and cardiogenic shock. Critical care medicine, 33(10), 2235–2240.

https://doi.org/10.1097/01.ccm.0000181525.99295.8f

Most read articles by the same author(s)