Role of Tumor Suppressor Genes in Carcinogenesis: A Narrative Review

Main Article Content

Beatriz Arely Cayón Figueroa
Brenda Itzel López Guzmán
Rubén Rangel Rodríguez
Felipe de Jesús Martín del Campo Gutierrez
Jehová Issay Partida García
Evelyn Monserrat Islas García

Abstract

Oncological diseases represent a significant burden on individuals and society. Although the exact causes of cancer are not fully understood, evidence suggests that a combination of genetic, environmental, and lifestyle factors contribute to its development. Methods: This narrative review explores the role of tumor suppressor genes in carcinogenesis. An exhaustive literature search was conducted in electronic databases, selecting articles focused on genetic regulation by tumor suppressor genes for analysis. These genes play a crucial role in cell cycle regulation, DNA repair, and apoptosis, with significant implications for cell function and disease development. Abnormal patterns in these genes have been associated with neurological disorders and oncological diseases. Conclusion: Understanding the role of tumor suppressor genes in carcinogenesis provides insights into disease development and progression and offers opportunities to develop potential therapeutic strategies. However, studying genetic changes in carcinogenesis presents challenges, including the complexity of gene regulation and the heterogeneity of diseases. Nonetheless, the therapeutic potential of tumor suppressor gene regulation in cancer prevention is promising, and more research is needed to understand the underlying mechanisms and develop safe and effective treatments.

Article Details

How to Cite
Beatriz Arely Cayón Figueroa, Brenda Itzel López Guzmán, Rubén Rangel Rodríguez, Felipe de Jesús Martín del Campo Gutierrez, Jehová Issay Partida García, & Evelyn Monserrat Islas García. (2023). Role of Tumor Suppressor Genes in Carcinogenesis: A Narrative Review. International Journal of Medical Science and Clinical Research Studies, 3(11), 2707–2716. https://doi.org/10.47191/ijmscrs/v3-i11-32
Section
Articles

References

Fischer M. Census and evaluation of p53 target genes. Oncogene. 2017;36(28):3943-3956. doi:10.1038/onc.2016.502

II. Güvenç C, Neckebroeck F, Antoranz A, Garmyn M, van den Oord J, Bosisio FM. Bona Fide Tumor Suppressor Genes Hypermethylated in Melanoma: A Narrative Review. Int J Mol Sci. 2021;22(19):10674. doi:10.3390/ijms221910674

III. Cho SB. Uncovering Oncogenic Mechanisms of Tumor Suppressor Genes in Breast Cancer Multi-Omics Data. Int J Mol Sci. 2022;23(17):9624. doi:10.3390/ijms23179624

IV. I M, Ma K. Loss of Mitochondrial Tumor Suppressor Genes Expression Is Associated with Unfavorable Clinical Outcome in Head and Neck Squamous Cell Carcinoma: Data from Retrospective Study. PloS One. 2016;11(1). doi:10.1371/journal.pone.0146948

V. Khatami F, Larijani B, Heshmat R, et al. Meta-analysis of promoter methylation in eight tumor-suppressor genes and its association with the risk of thyroid cancer. PloS One. 2017;12(9):e0184892. doi:10.1371/journal.pone.0184892

VI. Salgia R, Skarin AT. Molecular abnormalities in lung cancer. J Clin Oncol Off J Am Soc Clin Oncol. 1998;16(3):1207-1217. doi:10.1200/JCO.1998.16.3.1207

VII. Sasaki M, Sugio K, Kuwabara Y, et al. Alterations of tumor suppressor genes (Rb, p16, p27 and p53) and an increased FDG uptake in lung cancer. Ann Nucl Med. 2003;17(3):189-196. doi:10.1007/BF02990021

VIII. Emi M, Utada Y, Yoshimoto M, et al. Correlation of Allelic Loss with Poor Postoperative Survival in Breast Cancer. Breast Cancer Tokyo Jpn. 1999;6(4):351-356. doi:10.1007/BF02966452

IX. Friedrich RE, Giese M, Riethdorf S, Loning T. P53-mutation in smears of oral squamous cell carcinoma. Anticancer Res. 2000;20(6D):4927-4930.

X. Couch FJ, Hart SN, Sharma P, et al. Inherited mutations in 17 breast cancer susceptibility genes among a large triple-negative breast cancer cohort unselected for family history of breast cancer. J Clin Oncol Off J Am Soc Clin Oncol. 2015;33(4):304-311. doi:10.1200/JCO.2014.57.1414

XI. Wu J, Wang H, Ricketts CJ, et al. Germline mutations of renal cancer predisposition genes and clinical relevance in Chinese patients with sporadic, early-onset disease. Cancer. 2019;125(7):1060-1069. doi:10.1002/cncr.31908

XII. Bozgeyik E, Bozgeyik I. Non-coding RNA variations in oral cancers: A comprehensive review. Gene. 2023;851:147012. doi:10.1016/j.gene.2022.147012

XIII. Koo N, Sharma AK, Narayan S. Therapeutics Targeting p53-MDM2 Interaction to Induce Cancer Cell Death. Int J Mol Sci. 2022;23(9):5005. doi:10.3390/ijms23095005

XIV. Gambetta KE, McCulloch MA, Lal AK, et al. Diversity of Dystrophin Gene Mutations and Disease Progression in a Contemporary Cohort of Duchenne Muscular Dystrophy. Pediatr Cardiol. 2022;43(4):855-867. doi:10.1007/s00246-021-02797-6

XV. Groman JD, Meyer ME, Wilmott RW, Zeitlin PL, Cutting GR. Variant cystic fibrosis phenotypes in the absence of CFTR mutations. N Engl J Med. 2002;347(6):401-407. doi:10.1056/NEJMoa011899

XVI. Liu W, He L, Ramírez J, et al. Functional EGFR germline polymorphisms may confer risk for EGFR somatic mutations in non-small cell lung cancer, with a predominant effect on exon 19 microdeletions. Cancer Res. 2011;71(7):2423-2427. doi:10.1158/0008-5472.CAN-10-2689

XVII. Ota M, Sasaki T, Ebihara T, et al. Filaggrin-gene mutation has minimal effect on the disease severity in the lesions of atopic dermatitis. J Dermatol. 2021;48(11):1688-1699.

doi:10.1111/1346-8138.16087

XVIII. Nakashima Y, Kubo T, Sugiura K, et al. Lifelong Clinical Impact of the Presence of Sarcomere Gene Mutation in Japanese Patients With Hypertrophic Cardiomyopathy. Circ J Off J Jpn Circ Soc. 2020;84(10):1846-1853. doi:10.1253/circj.CJ-20-0027

XIX. Pease M, Ling C, Mack WJ, Wang K, Zada G. The role of epigenetic modification in tumorigenesis and progression of pituitary adenomas: a systematic review of the literature. PloS One. 2013;8(12):e82619. doi:10.1371/journal.pone.0082619

XX. Moarii M, Boeva V, Vert JP, Reyal F. Changes in correlation between promoter methylation and gene expression in cancer. BMC Genomics. 2015;16:873. doi:10.1186/s12864-015-1994-2

XXI. Qiu T, Zhou L, Zhu W, et al. Effects of treatment with histone deacetylase inhibitors in solid tumors: a review based on 30 clinical trials. Future Oncol Lond Engl. 2013;9(2):255-269. doi:10.2217/fon.12.173

XXII. Ogunbiyi OA, Goodfellow PJ, Gagliardi G, et al. Prognostic value of chromosome 1p allelic loss in colon cancer. Gastroenterology. 1997;113(3):761-766. doi:10.1016/s0016-5085(97)70169-0

XXIII. Simoneau M, LaRue H, Aboulkassim TO, Meyer F, Moore L, Fradet Y. Chromosome 9 deletions and recurrence of superficial bladder cancer: identification of four regions of prognostic interest. Oncogene. 2000;19(54):6317-6323. doi:10.1038/sj.onc.1204022

XXIV. Cohn KH, Ornstein DL, Wang F, et al. The significance of allelic deletions and aneuploidy in colorectal carcinoma. Results of a 5-year follow-up study. Cancer. 1997;79(2):233-244.

XXV. Zhang J, Walsh MF, Wu G, et al. Germline Mutations in Predisposition Genes in Pediatric Cancer. N Engl J Med. 2015;373(24):2336-2346. doi:10.1056/NEJMoa1508054

XXVI. H K, S O, Y S, M M. Hereditary breast and ovarian cancer susceptibility genes (review). Oncol Rep. 2013;30(3). doi:10.3892/or.2013.2541

XXVII. Nichols KE, Heath JA, Friedman D, et al. TP53, BRCA1, and BRCA2 tumor suppressor genes are not commonly mutated in survivors of Hodgkin’s disease with second primary neoplasms. J Clin Oncol Off J Am Soc Clin Oncol. 2003;21(24):4505-4509. doi:10.1200/JCO.2003.12.042

XXVIII. Farrington SM, Tenesa A, Barnetson R, et al. Germline susceptibility to colorectal cancer due to base-excision repair gene defects. Am J Hum Genet. 2005;77(1):112-119. doi:10.1086/431213

XXIX. Kelly K, Leventhal H, Marvin M, Toppmeyer D, Baran J, Schwalb M. Cancer genetics knowledge and beliefs and receipt of results in Ashkenazi Jewish individuals receiving counseling for BRCA1/2 mutations. Cancer Control J Moffitt Cancer Cent. 2004;11(4):236-244. doi:10.1177/107327480401100405

XXX. Nelson HD, Pappas M, Zakher B, Mitchell JP, Okinaka-Hu L, Fu R. Risk assessment, genetic counseling, and genetic testing for BRCA-related cancer in women: a systematic review to update the U.S. Preventive Services Task Force recommendation. Ann Intern Med. 2014;160(4):255-266. doi:10.7326/M13-1684

XXXI. Frost AS, Toaff M, Biagi T, Stark E, McHenry A, Kaltman R. Effects of Cancer Genetic Panel Testing on at-Risk Individuals. Obstet Gynecol. 2018;131(6):1103-1110. doi:10.1097/AOG.0000000000002531

XXXII. Desrosiers LR, Quinn E, Cramer S, Dobek W. Integrating genetic counseling and testing in the pediatric oncology setting: Parental attitudes and influencing factors. Pediatr Blood Cancer. 2019;66(10):e27907. doi:10.1002/pbc.27907

XXXIII. McGill BC, Wakefield CE, Vetsch J, et al. “I remember how I felt, but I don’t remember the gene”: Families’ experiences of cancer-related genetic testing in childhood. Pediatr Blood Cancer.2019;66(8):e27762. doi:10.1002/pbc.27762

XXXIV. Rebbeck TR, Mitra N, Wan F, et al. Association of type and location of BRCA1 and BRCA2 mutations with risk of breast and ovarian cancer. JAMA.2015;313(13):1347-1361. doi:10.1001/jama.2014.5985

XXXV. Meindl A, Ditsch N, Kast K, Rhiem K, Schmutzler RK. Hereditary breast and ovarian cancer: new genes, new treatments, new concepts. Dtsch Arzteblatt Int. 2011;108(19):323-330. doi:10.3238/arztebl.2011.0323

XXXVI. Feng Z, Yang X, Tian M, et al. BRCA genes as candidates for colorectal cancer genetic testing panel: systematic review and meta-analysis. BMC Cancer. 2023;23(1):807. doi:10.1186/s12885-023-11328-w

XXXVII. Tornesello ML, Buonaguro L, Buonaguro FM. Mutations of the TP53 gene in adenocarcinoma and squamous cell carcinoma of the cervix: a systematic review. Gynecol Oncol. 2013;128(3):442-448. doi:10.1016/j.ygyno.2012.11.017

XXXVIII. Garcia-Closas M, Kristensen V, Langerød A, et al. Common genetic variation in TP53 and its flanking genes, WDR79 and ATP1B2, and susceptibility to breast cancer. Int J Cancer. 2007;121(11):2532-2538. doi:10.1002/ijc.22985

XXXIX. Overgaard J, Yilmaz M, Guldberg P, Hansen LL, Alsner J. TP53 mutation is an independent prognostic marker for poor outcome in both node-negative and node-positive breast cancer. Acta Oncol Stockh Swed. 2000;39(3):327-333. doi:10.1080/028418600750013096

XL. Morikawa T, Kuchiba A, Liao X, et al. Tumor TP53 expression status, body mass index and prognosis in colorectal cancer. Int J Cancer. 2012;131(5):1169-1178. doi:10.1002/ijc.26495

XLI. Kelsey KT, Hirao T, Hirao S, et al. TP53 alterations and patterns of carcinogen exposure in a U.S. population-based study of bladder cancer. Int J Cancer. 2005;117(3):370-375. doi:10.1002/ijc.21195

XLII. Chen SP, Tsai ST, Jao SW, et al. Single nucleotide polymorphisms of the APC gene and colorectal cancer risk: a case-control study in Taiwan. BMC Cancer. 2006;6:83. doi:10.1186/1471-2407-6-83

XLIII. Traverso G, Shuber A, Levin B, et al. Detection of APC mutations in fecal DNA from patients with colorectal tumors. N Engl J Med. 2002;346(5):311-320. doi:10.1056/NEJMoa012294

XLIV. Bertario L, Russo A, Sala P, et al. APC genotype is not a prognostic factor in familial adenomatous polyposis patients with colorectal cancer. Dis Colon Rectum. 2004;47(10):1662-1669. doi:10.1007/s10350-004-0652-6

XLV. de Vogel S, van Engeland M, Lüchtenborg M, et al. Dietary folate and APC mutations in sporadic colorectal cancer. J Nutr. 2006;136(12):3015-3021. doi:10.1093/jn/136.12.3015

XLVI. Liang J, Lin C, Hu F, et al. APC polymorphisms and the risk of colorectal neoplasia: a HuGE review and meta-analysis. Am J Epidemiol. 2013;177(11):1169-1179. doi:10.1093/aje/kws382

XLVII. Marini A, Mirmohammadsadegh A, Nambiar S, Gustrau A, Ruzicka T, Hengge UR. Epigenetic inactivation of tumor suppressor genes in serum of patients with cutaneous melanoma. J Invest Dermatol. 2006;126(2):422-431. doi:10.1038/sj.jid.5700073

XLVIII. C G, F N, A A, M G, J van den O, Fm B. Bona Fide Tumor Suppressor Genes Hypermethylated in Melanoma: A Narrative Review. Int J Mol Sci. 2021;22(19). doi:10.3390/ijms221910674

XLIX. Rodón J, Funchain P, Laetsch TW, et al. A phase II study of TAS-117 in patients with advanced solid tumors harboring germline PTEN-inactivating mutations. Future Oncol Lond Engl. 2022;18(30):3377-3387. doi:10.2217/fon-2022-0305

L. Chen H, Luthra R, Routbort MJ, et al. Molecular Profile of Advanced Thyroid Carcinomas by Next-Generation Sequencing: Characterizing Tumors Beyond Diagnosis for Targeted Therapy. Mol Cancer Ther. 2018;17(7):1575-1584. doi:10.1158/1535-7163.MCT-17-0871

LI. Kauczor HU, Schuler M, Heussel CP, et al. CT-guided intratumoral gene therapy in non-small-cell lung cancer. Eur Radiol. 1999;9(2):292-296. doi:10.1007/s003300050670

LII. Gleich LL. Gene therapy for head and neck cancer. The Laryngoscope. 2000;110(5 Pt 1):708-726. doi:10.1097/00005537-200005000-00002

LIII. Gonzalez-Salinas F, Martinez-Amador C, Trevino V. Characterizing genes associated with cancer

Most read articles by the same author(s)