Estrogen and Memory during the Perimenopause Period: A Critical Review

Main Article Content

Jennifer L. Williamson

Abstract

Menopause is an encompassing neuroendocrine aging process, marked by declining sex hormones, particularly estradiol, with significant consequences for cognitive brain function that will affect every woman who lives long enough to enter the phase. This critical review examines recent neuroimaging studies investigating the underlying biological mechanisms of cognitive changes during menopause, focusing on estrogen receptor density in the brain. Advanced neuroimaging techniques, such as 18F-fluoroestradiol (18F-FES) Positron Emission Tomography (PET), have provided novel insights into the distribution and density of estrogen receptors across different menopausal stages. Key findings reveal that estrogen receptor (ER) density in the brain increases progressively over the menopause transition, independent of age and plasma estradiol levels. Notably, higher ER density is associated with poorer memory performance and predicts mood and cognitive symptoms in postmenopausal women. These results suggest a potential compensatory mechanism in response to declining estrogen levels, offering a neurobiological explanation for cognitive changes observed during menopause.

Article Details

How to Cite
Jennifer L. Williamson. (2024). Estrogen and Memory during the Perimenopause Period: A Critical Review. International Journal of Medical Science and Clinical Research Studies, 4(12), 2248–2254. https://doi.org/10.47191/ijmscrs/v4-i12-24
Section
Articles

References

I. de Lange, A.-M. G., Barth, C., Kaufmann, T., Maximov, I. I., van der Meer, D., Agartz, I., & Westlye, L. T. (2020). Women’s brain aging: Effects of sex-hormone exposure, pregnancies, and genetic risk for Alzheimer’s disease. Human Brain Mapping, 41(18), 5141–5150.

https://doi.org/10.1002/hbm.25180

II. He, L., Guo, W., Qiu, J., An, X., & Lu, W. (2021). Altered spontaneous brain activity in women during menopause transition and its association with cognitive function and serum estradiol level. Frontiers in Endocrinology, 12.

https://api.semanticscholar.org/CorpusID:234349935

III. Miller, V. M., Naftolin, F., Asthana, S., Black, D. M., Brinton, E. A., Budoff, M. J., Cedars, M. I., Dowling, N. M., Gleason, C. E., Hodis, H. N., Jayachandran, M., Kantarci, K., Lobo, R. A., Manson, J. E., Pal, L., Santoro, N. F., Taylor, H. S., & Harman, S. M. (2019). The Kronos Early Estrogen Prevention Study (KEEPS): what have we learned? Menopause (New York, N.Y.), 26(9), 1071–1084. https://doi.org/10.1097/GME.0000000000001326

IV. Mosconi, L., Nerattini, M., Matthews, D. C., Jett, S., Andy, C., Williams, S., Yepez, C. B., Zarate, C., Carlton, C., Fauci, F., Ajila, T., Pahlajani, S., Andrews, R., Pupi, A., Ballon, D., Kelly, J., Osborne, J., Nehmeh, S. A., Fink, M., … Brinton, R. D. (2024). In vivo brain estrogen receptor density by neuroendocrine aging and relationships with cognition and symptomatology. Scientific Reports, 14(1), 12680.

https://api.semanticscholar.org/CorpusID:270637285

V. Weber, M. T., Rubin, L. H., Schroeder, R. A., Steffenella, T. M., & Maki, P. M. (2021). Cognitive profiles in perimenopause: Hormonal and menopausal symptom correlates. Climacteric, 24(4), 401–407.

https://doi.org/10.1080/13697137.2021.1892626