The Role of Artificial Intelligence and Machine Learning in Decision-Making in the ICU

Main Article Content

Dr Ketan Kargirwar
Dr Anjali Dange
Dr Rahul Pandit

Abstract

Artificial Intelligence (AI) and Machine Learning (ML) are revolutionizing critical care. In the Intensive Care Unit (ICU), timely and accurate decisions are crucial. AI and ML can enhance decision-making by predicting adverse events, personalizing treatment plans, and improving diagnostic accuracy. Early warning systems, powered by AI, can detect conditions like sepsis and acute respiratory distress syndrome early on. AI-driven decision support systems provide real-time recommendations, optimizing resource allocation and ensuring adherence to best practices.


While AI offers significant benefits, challenges like data privacy, bias, and ethical considerations must be addressed. Ensuring transparency, accountability, and fairness in AI algorithms is essential.


The future of AI in the ICU is promising. Advancements in AI and ML, coupled with collaborative human-AI approaches can further improve patient outcomes. By addressing ethical concerns and fostering responsible AI development, healthcare providers can harness the power of AI to optimize critical care.

Article Details

How to Cite
Dr Ketan Kargirwar, Anjali Dange, & Dr Rahul Pandit. (2024). The Role of Artificial Intelligence and Machine Learning in Decision-Making in the ICU. International Journal of Medical Science and Clinical Research Studies, 4(12), 2289–2295. https://doi.org/10.47191/ijmscrs/v4-i12-31
Section
Articles

References

Shimabukuro DW, Barton CW, Feldman MD, Mataraso S, Das R. Effect of a machine learning–based severe sepsis prediction algorithm on patient survival and clinical utility. Crit Care Med. 2017;45(5):778-784. doi:10.1097/CCM.0000000000002321.

Esteva A, Robicquet A, Ramsundar B, Kuleshov V, DePristo M, Chou K, et al. A guide to deep learning in healthcare. Nat Med. 2021;25(1):24-29. doi:10.1038/s41591-018-0316-z.

Topol EJ. High-performance medicine: the convergence of human and artificial intelligence. Nat Med. 2019;25(1):44-56. doi:10.1038/s41591-018-0300-7.

Ng M, Fleming T, Robinson M, Thomson B, Graetz N, Margono C, et al. Global, regional, and national prevalence of overweight and obesity in children and adults during 1980–2013: a systematic analysis for the Global Burden of Disease Study 2013. Lancet. 2020;384(9945):766-781. doi:10.1016/S0140-6736(14)60460-8.

Wynants L, Van Calster B, Bonten MM, Collins GS, Debray TP, De Vos M, et al. Prediction models for diagnosis and prognosis of covid-19 infection: systematic review and critical appraisal. BMJ. 2020;369. doi:10.1136/bmj.m1328.

Johnson AE, Pollard TJ, Shen L, Li-wei HL, Feng M, Ghassemi M, et al. MIMIC-III, a freely accessible critical care database. Sci Data. 2021;3(1):160035. doi:10.1038/sdata.2016.35.

Floridi L, Cowls J, Beltrametti M, Chatila R, Chazerand P, Dignum V, et al. AI4People—An ethical framework for a good AI society: opportunities, risks, principles, and recommendations. Minds Mach. 2019;28(4):689-707. doi:10.1007/s11023-018-9482-5.

Sutton RT, Pincock D, Baumgart DC, Sadowski DC, Fedorak RN, Kroeker KI. An overview of clinical decision support systems: benefits, risks, and strategies for success. NPJ Digit Med. 2020;3(1):17. doi:10.1038/s41746-020-0221-y.

Weng SF, Reps J, Kai J, Garibaldi JM, Qureshi N. Can machine-learning improve cardiovascular risk prediction using routine clinical data? PLoS One. 2017;12(4). doi:10.1371/journal.pone.0174944.

Ng M, Fleming T, Robinson M, Thomson B, Graetz N, Margono C, et al. Global, regional, and national prevalence of overweight and obesity in children and adults during 1980–2013: a systematic analysis for the Global Burden of Disease Study 2013. Lancet. 2020;384(9945):766-781. doi:10.1016/S0140-6736(14)60460-8.

Miotto R, Wang F, Wang S, Jiang X, Dudley JT. Deep learning for healthcare: review, opportunities and challenges. Brief Bioinform. 2018;19(6):1236-1246. doi:10.1093/bib/bbx044.

Komorowski M, Celi LA, Badawi O, Gordon AC, Faisal AA. The Artificial Intelligence Clinician learns optimal treatment strategies for sepsis in intensive care. Nat Med. 2018;24(11):1716-1720. doi:10.1038/s41591-018-0213-5.

Sendak MP, D'Arcy J, Kashyap S, Gao M, Nichols M, Corey K, et al. A path for translation of machine learning products into healthcare delivery. EMJ Innov. 2020;4:23-26. doi:10.33590/emjinnov/20-00149.

Jiang F, Jiang Y, Zhi H, Dong Y, Li H, Ma S, et al. Artificial intelligence in healthcare: past, present and future. Stroke Vasc Neurol. 2019;2(4):230-243. doi:10.1136/svn-2017-000101.

Patel BN, Rosenberg L, Willcox G, Baltaxe D, Lyons M, Irvin J, et al. Human–machine partnership with artificial intelligence for chest radiograph diagnosis. NPJ Digit Med. 2020;2(1):111. doi:10.1038/s41746-019-0189-7.

Dilsizian SE, Siegel EL. Artificial intelligence in medicine and cardiac imaging: harnessing big data and advanced computing to provide personalized medical diagnosis and treatment. Curr Cardiol Rep. 2020;16(1):441. doi:10.1007/s11886-013-0441-8.

Yu KH, Beam AL, Kohane IS. Artificial intelligence in healthcare. Nat Biomed Eng. 2019;2(10):719-731. doi:10.1038/s41551-018-0305-z.

Rajkomar A, Dean J, Kohane I. Machine learning in medicine. N Engl J Med. 2019;380(14):1347-1358. doi:10.1056/NEJMra1814259.