Interaction between Microglia and Mitochondrial Metabolism in the Development of Amyotrophic Lateral Sclerosis (ALS)

Main Article Content

Leonel Witcoski Junior
Jordana Dinorá de Lima
Amanda Girardi Somensi
André Guilherme de Paula
Carolina Taina Torres
Victor Hugo Queiros Bordenowski
Andressa Knapik da Fontoura
Thais Sibioni Berti Bastos
Paula Santana Lunardi
Tarcio Teodoro Braga

Abstract

Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease that primarily affects motor neurons, leading to muscle weakness and eventual paralysis. Although the precise mechanisms driving ALS are not yet fully elucidated, emerging evidence suggests a crucial role of neuroinflammation and mitochondrial dysfunction in disease progression. Microglia, the brain’s resident immune cells, play a central role in the neuroinflammatory response and undergo metabolic reprogramming during ALS, shifting from a homeostatic state to an inflammatory one. This reactivity is linked to mitochondrial dysfunction, which impairs energy production but allows microglia to maintain a pro-inflammatory phenotype through alternative pathways, such as glycolysis. This interaction between mitochondrial metabolism and microglial function exacerbates neuroinflammation, contributing to neuronal damage and accelerating ALS pathology. Mutations in genes like C9ORF72, SOD1, and TARDBP, commonly associated with ALS, also affect cellular processes such as RNA metabolism and mitochondrial function, further worsening the effects of the disease. This review explores the role of microglial mitochondrial metabolism in ALS, highlighting its importance in disease progression and identifying potential therapeutic targets to modulate neuroinflammation and metabolic dysfunction to slow ALS progression.

Article Details

How to Cite
Leonel Witcoski Junior, Jordana Dinorá de Lima, Amanda Girardi Somensi, André Guilherme de Paula, Carolina Taina Torres, Victor Hugo Queiros Bordenowski, Andressa Knapik da Fontoura, Thais Sibioni Berti Bastos, Paula Santana Lunardi, & Tarcio Teodoro Braga. (2024). Interaction between Microglia and Mitochondrial Metabolism in the Development of Amyotrophic Lateral Sclerosis (ALS). International Journal of Medical Science and Clinical Research Studies, 4(12), 2192–2210. https://doi.org/10.47191/ijmscrs/v4-i12-16
Section
Articles

References

I. ALFAHEL, L. et al. Targeting low levels of MIF expression as a potential therapeutic strategy for ALS. Cell Reports Medicine, v. 5, n. 5, p. 101546, maio 2024.

II. ANOAR, S.; WOODLING, N. S.; NICCOLI, T. Mitochondria Dysfunction in Frontotemporal Dementia/Amyotrophic Lateral Sclerosis: Lessons From Drosophila Models. Frontiers in Neuroscience, v. 15, 24 nov. 2021.

III. ARTHUR, K. C.; CALVO, A.; PRICE, T. R.; GEIGER, J. T.; CHIÒ, A.; TRAYNOR, B. J. Projected increase in amyotrophic lateral sclerosis from 2015 to 2040. Nature Communications, v. 7, n. 1, p. 12408, 11 ago. 2016.

IV. ASHFORD, B. A.; BOCHE, D.; COOPER-KNOCK, J.; HEATH, P. R.; SIMPSON, J. E.; HIGHLEY, J. R. Review: Microglia in motor neuron disease. Neuropathology and applied neurobiology, v. 47, n. 2, p. 179–197, fev. 2021.

V. AYERS, J. I.; FROMHOLT, S. E.; O’NEAL, V. M.; DIAMOND, J. H.; BORCHELT, D. R. Prion-like propagation of mutant SOD1 misfolding and motor neuron disease spread along neuroanatomical pathways. Acta Neuropathologica, v. 131, n. 1, p. 103–114, 9 jan. 2016.

VI. AZADMANESH, J.; BORGSTAHL, G. A Review of the Catalytic Mechanism of Human Manganese Superoxide Dismutase. Antioxidants, v. 7, n. 2, p. 25, 30 jan. 2018.

VII. BASILE, M. S.; BATTAGLIA, G.; BRUNO, V.; MANGANO, K.; FAGONE, P.; PETRALIA, M. C.; NICOLETTI, F.; CAVALLI, E. The Dichotomic Role of Macrophage Migration Inhibitory Factor in Neurodegeneration. International Journal of Molecular Sciences, v. 21, n. 8, p. 3023, 24 abr. 2020.

VIII. BÉLAND, L.-C.; MARKOVINOVIC, A.; JAKOVAC, H.; MARCHI, F. DE; BILIC, E.; MAZZINI, L.; KRIZ, J.; MUNITIC, I. Immunity in amyotrophic lateral sclerosis: blurred lines between excessive inflammation and inefficient immune responses. Brain Communications, v. 2, n. 2, 1 jul. 2020.

IX. BERDYŃSKI, M.; MISZTA, P.; SAFRANOW, K.; ANDERSEN, P. M.; MORITA, M.; FILIPEK, S.; ŻEKANOWSKI, C.; KUŹMA-KOZAKIEWICZ, M. SOD1 mutations associated with amyotrophic lateral sclerosis analysis of variant severity. Scientific Reports, v. 12, n. 1, p. 103, 7 jan. 2022.

X. BERNIER, L.-P.; YORK, E. M.; KAMYABI, A.; CHOI, H. B.; WEILINGER, N. L.; MACVICAR, B. A. Microglial metabolic flexibility supports immune surveillance of the brain parenchyma. Nature Communications, v. 11, n. 1, p. 1559, 25 mar. 2020.

XI. BERNIER, L.-P.; YORK, E. M.; MACVICAR, B. A. Immunometabolism in the Brain: How Metabolism Shapes Microglial Function. Trends in Neurosciences, v. 43, n. 11, p. 854–869, nov. 2020.

XII. BERUMEN SÁNCHEZ, G.; BUNN, K. E.; PUA, H. H.; RAFAT, M. Extracellular vesicles: mediators of intercellular communication in tissue injury and disease. Cell Communication and Signaling, v. 19, n. 1, p. 104, 16 out. 2021.

XIII. BOLAÑOS, J. P.; ALMEIDA, A.; MONCADA, S. Glycolysis: a bioenergetic or a survival pathway? Trends in biochemical sciences, v. 35, n. 3, p. 145–9, mar. 2010.

XIV. BOS, P. H.; LOWRY, E. R.; COSTA, J.; THAMS, S.; GARCIA-DIAZ, A.; ZASK, A.; WICHTERLE, H.; STOCKWELL, B. R. Development of MAP4 Kinase Inhibitors as Motor Neuron-Protecting Agents. Cell Chemical Biology, v. 26, n. 12, p. 1703- 1715.e37, dez. 2019.

XV. BOUZIER‐SORE, A.; VOISIN, P.; BOUCHAUD, V.; BEZANCON, E.; FRANCONI, J.; PELLERIN, L. Competition between glucose and lactate as oxidative energy substrates in both neurons and astrocytes: a comparative NMR study. European Journal of Neuroscience, v. 24, n. 6, p. 1687–1694, 21 set. 2006.

XVI. BRADFORD, D.; RODGERS, K. E. Advancements and challenges in amyotrophic lateral sclerosis. Frontiers in Neuroscience, v. 18, 22 maio 2024.

XVII. BRENNAN, F. H. et al. Microglia coordinate cellular interactions during spinal cord repair in mice. Nature Communications, v. 13, n. 1, p. 4096, 14 jul. 2022.

XVIII. BROWN, R. H.; AL-CHALABI, A. Amyotrophic Lateral Sclerosis. New England Journal of Medicine, v. 377, n. 2, p. 162–172, 13 jul. 2017.

XIX. BRUMBAUGH-REED, E. H.; AOKI, K.; TOETTCHER, J. E. Rapid and reversible dissolution of biomolecular condensates using light-controlled recruitment of a solubility tag. bioRxiv : the preprint server for biology, 17 jan. 2024.

XX. BURG, T.; BOSCH, L. VAN DEN. Abnormal energy metabolism in ALS: a key player? Current opinion in neurology, v. 36, n. 4, p. 338–345, 1 ago. 2023.

XXI. BUTOVSKY, O. et al. Identification of a unique TGF-β–dependent molecular and functional signature in microglia. Nature Neuroscience, v. 17, n. 1, p. 131–143, 8 jan. 2014.

XXII. CAIOLI, S.; PIERI, M.; ANTONINI, A.; GUGLIELMOTTI, A.; SEVERINI, C.; ZONA, C. Monocyte Chemoattractant Protein-1 upregulates GABA-induced current: Evidence of modified GABAA subunit composition in cortical neurons from the G93A mouse model of Amyotrophic Lateral Sclerosis. Neuropharmacology, v. 73, p. 247–260, out. 2013.

XXIII. CALOVI, S.; MUT-ARBONA, P.; SPERLÁGH, B. Microglia and the Purinergic Signaling System. Neuroscience, v. 405, p. 137–147, maio 2019.

XXIV. CAPUTA, G.; CASTOLDI, A.; PEARCE, E. J. Metabolic adaptations of tissue-resident immune cells. Nature Immunology, v. 20, n. 7, p. 793–801, 18 jul. 2019.

XXV. CASSINA, P.; MIQUEL, E.; MARTÍNEZ-PALMA, L.; CASSINA, A. Glial Metabolic Reprogramming in Amyotrophic Lateral Sclerosis. Neuroimmunomodulation, v. 28, n. 4, p. 204–212, 2021.

XXVI. CHRISTOFORIDOU, E.; JOILIN, G.; HAFEZPARAST, M. Potential of activated microglia as a source of dysregulated extracellular microRNAs contributing to neurodegeneration in amyotrophic lateral sclerosis. Journal of Neuroinflammation, v. 17, n. 1, p. 135, 28 dez. 2020.

XXVII. COGNATA, V. LA; MORELLO, G.; GUARNACCIA, M.; CAVALLARO, S. The multifaceted role of the CXC chemokines and receptors signaling axes in ALS pathophysiology. Progress in Neurobiology, v. 235, p. 102587, abr. 2024.

XXVIII. COLOMBO, E. et al. Correlation between clinical phenotype and electromyographic parameters in amyotrophic lateral sclerosis. Journal of Neurology, v. 270, n. 1, p. 511–518, 2 jan. 2023.

XXIX. COLONNA, M. The biology of TREM receptors. Nature Reviews Immunology, v. 23, n. 9, p. 580–594, 7 set. 2023.

XXX. COLONNA, M.; BUTOVSKY, O. Microglia Function in the Central Nervous System During Health and Neurodegeneration. Annual Review of Immunology, v. 35, n. 1, p. 441–468, 26 abr. 2017.

XXXI. COOK, C.; PETRUCELLI, L. Genetic Convergence Brings Clarity to the Enigmatic Red Line in ALS. Neuron, v. 101, n. 6, p. 1057–1069, mar. 2019.

XXXII. CORRIONERO, A.; HORVITZ, H. R. A C9orf72 ALS/FTD Ortholog Acts in Endolysosomal Degradation and Lysosomal Homeostasis. Current Biology, v. 28, n. 10, p. 1522- 1535.e5, maio 2018.

XXXIII. COZZOLINO, M.; FERRI, A.; VALLE, C.; CARRÌ, M. T. Mitochondria and ALS: implications from novel genes and pathways. Molecular and cellular neurosciences, v. 55, p. 44–9, jul. 2013.

XXXIV. CUI, R.; TUO, M.; LI, P.; ZHOU, C. Association between TBK1 mutations and risk of amyotrophic lateral sclerosis/frontotemporal dementia spectrum: a meta-analysis. Neurological Sciences, v. 39, n. 5, p. 811–820, 18 maio 2018.

XXXV. CURZIO, D. DI; GURM, M.; TURNBULL, M.; NADEAU, M.-J.; MEEK, B.; REMPEL, J. D.; FINEBLIT, S.; JONASSON, M.; HEBERT, S.; FERGUSON-PARRY, J.; DOUVILLE, R. N. Pro-Inflammatory Signaling Upregulates a Neurotoxic Conotoxin-Like Protein Encrypted Within Human Endogenous Retrovirus-K. Cells, v. 9, n. 7, p. 1584, 30 jun. 2020.

XXXVI. DHAR, S. K.; ZHANG, J.; GAL, J.; XU, Y.; MIAO, L.; LYNN, B. C.; ZHU, H.; KASARSKIS, E. J.; CLAIR, D. K. ST. FUsed in Sarcoma Is a Novel Regulator of Manganese Superoxide Dismutase Gene Transcription. Antioxidants & Redox Signaling, v. 20, n. 10, p. 1550–1566, abr. 2014.

XXXVII. DIANA, A.; PILLAI, R.; BONGIOANNI, P.; O’KEEFFE, A. G.; MILLER, R. G.; MOORE, D. H. Gamma aminobutyric acid (GABA) modulators for amyotrophic lateral sclerosis/motor neuron disease. Cochrane Database of Systematic Reviews, v. 2017, n. 1, 9 jan. 2017.

XXXVIII. DÍAZ-AMARILLA, P.; OLIVERA-BRAVO, S.; TRIAS, E.; CRAGNOLINI, A.; MARTÍNEZ-PALMA, L.; CASSINA, P.; BECKMAN, J.; BARBEITO, L. Phenotypically aberrant astrocytes that promote motoneuron damage in a model of inherited amyotrophic lateral sclerosis. Proceedings of the National Academy of Sciences, v. 108, n. 44, p. 18126–18131, 18 nov. 2011.

XXXIX. DIVAKARUNI, A. S. et al. Inhibition of the mitochondrial pyruvate carrier protects from excitotoxic neuronal death. The Journal of cell biology, v. 216, n. 4, p. 1091–1105, 3 abr. 2017.

XL. DYKE, J. M. VAN; SMIT-OISTAD, I. M.; MACRANDER, C.; KRAKORA, D.; MEYER, M. G.; SUZUKI, M. Macrophage-mediated inflammation and glial response in the skeletal muscle of a rat model of familial amyotrophic lateral sclerosis (ALS). Experimental Neurology, v. 277, p. 275–282, mar. 2016.

XLI. EPPERLY, M. W. et al. Amelioration of Amyotrophic Lateral Sclerosis in SOD1 G93A Mice by M 2 Microglia from Transplanted Marrow. In Vivo, v. 33, n. 3, p. 675–688, 26 abr. 2019.

XLII. ESPERANTE, I. J.; MEYER, M.; BANZAN, C.; KRUSE, M. S.; LIMA, A.; ROIG, P.; GUENNOUN, R.; SCHUMACHER, M.; NICOLA, A. F. DE; GONZALEZ DENISELLE, M. C. Testosterone Reduces Myelin Abnormalities in the Wobbler Mouse Model of Amyotrophic Lateral Sclerosis. Biomolecules, v. 14, n. 4, p. 428, 1 abr. 2024.

XLIII. FAIRLEY, L. H.; WONG, J. H.; BARRON, A. M. Mitochondrial Regulation of Microglial Immunometabolism in Alzheimer’s Disease. Frontiers in Immunology, v. 12, 25 fev. 2021.

XLIV. FALABELLA, M.; VERNON, H. J.; HANNA, M. G.; CLAYPOOL, S. M.; PITCEATHLY, R. D. S. Cardiolipin, Mitochondria, and Neurological Disease. Trends in Endocrinology & Metabolism, v. 32, n. 4, p. 224–237, abr. 2021.

XLV. FAN, H.; BAI, Q.; YANG, Y.; SHI, X.; DU, G.; YAN, J.; SHI, J.; WANG, D. The key roles of reactive oxygen species in microglial inflammatory activation: Regulation by endogenous antioxidant system and exogenous sulfur-containing compounds. European Journal of Pharmacology, v. 956, p. 175966, out. 2023.

XLVI. FEI, E. et al. SUMO-1 modification increases human SOD1 stability and aggregation. Biochemical and Biophysical Research Communications, v. 347, n. 2, p. 406–412, ago. 2006.

XLVII. FERRAIUOLO, L.; HIGGINBOTTOM, A.; HEATH, P. R.; BARBER, S.; GREENALD, D.; KIRBY, J.; SHAW, P. J. Dysregulation of astrocyte–motoneuron cross-talk in mutant superoxide dismutase 1-related amyotrophic lateral sclerosis. Brain, v. 134, n. 9, p. 2627–2641, set. 2011.

XLVIII. FIEBICH, B. L.; BATISTA, C. R. A.; SALIBA, S. W.; YOUSIF, N. M.; OLIVEIRA, A. C. P. DE. Role of Microglia TLRs in Neurodegeneration. Frontiers in Cellular Neuroscience, v. 12, 2 out. 2018.

XLIX. FU, X.; ZHANG, Z.; HAYES, L. R.; WRIGHT, N.; ASBURY, J.; LI, S.; YE, Y.; SUN, S. DDX3X overexpression decreases dipeptide repeat proteins in a mouse model of C9ORF72-ALS/FTD. Experimental neurology, v. 376, p. 114768, jun. 2024.

L. GAL, J.; ZHANG, J.; KWINTER, D. M.; ZHAI, J.; JIA, H.; JIA, J.; ZHU, H. Nuclear localization sequence of FUS and induction of stress granules by ALS mutants. Neurobiology of Aging, v. 32, n. 12, p. 2323.e27-2323.e40, dez. 2011.

LI. GARBUZOVA-DAVIS, S.; SANBERG, P. R. Blood-CNS Barrier Impairment in ALS patients versus an animal model. Frontiers in Cellular Neuroscience, v. 8, 2014.

LII. GHIASI, P.; HOSSEINKHANI, S.; NOORI, A.; NAFISSI, S.; KHAJEH, K. Mitochondrial complex I deficiency and ATP/ADP ratio in lymphocytes of amyotrophic lateral sclerosis patients. Neurological Research, v. 34, n. 3, p. 297–303, 12 abr. 2012.

LIII. GIMENO‐BAYÓN, J.; LÓPEZ‐LÓPEZ, A.; RODRÍGUEZ, M. J.; MAHY, N. Glucose pathways adaptation supports acquisition of activated microglia phenotype. Journal of Neuroscience Research, v. 92, n. 6, p. 723–731, 7 jun. 2014.

LIV. GINHOUX, F. et al. Fate Mapping Analysis Reveals That Adult Microglia Derive from Primitive Macrophages. Science, v. 330, n. 6005, p. 841–845, 5 nov. 2010.

LV. GOLIA, M. T. et al. Changes in glial cell activation and extracellular vesicles production precede the onset of disease symptoms in transgenic hSOD1G93A pigs. Experimental Neurology, v. 374, p. 114716, abr. 2024.

LVI. GRAD, L. I.; ROULEAU, G. A.; RAVITS, J.; CASHMAN, N. R. Clinical Spectrum of Amyotrophic Lateral Sclerosis (ALS). Cold Spring Harbor perspectives in medicine, v. 7, n. 8, 1 ago. 2017.

LVII. GROPMAN, A. L.; SUMMAR, M.; LEONARD, J. V. Neurological implications of urea cycle disorders. Journal of Inherited Metabolic Disease, v. 30, n. 6, p. 865–879, 23 nov. 2007.

LVIII. HALIM, N. D.; MCFATE, T.; MOHYELDIN, A.; OKAGAKI, P.; KOROTCHKINA, L. G.; PATEL, M. S.; JEOUNG, N. H.; HARRIS, R. A.; SCHELL, M. J.; VERMA, A. Phosphorylation status of pyruvate dehydrogenase distinguishes metabolic phenotypes of cultured rat brain astrocytes and neurons. Glia, v. 58, n. 10, p. 1168–76, ago. 2010.

LIX. HAO, Z.; WANG, R.; REN, H.; WANG, G. Role of the C9ORF72 Gene in the Pathogenesis of Amyotrophic Lateral Sclerosis and Frontotemporal Dementia. Neuroscience Bulletin, v. 36, n. 9, p. 1057–1070, 29 set. 2020.

LX. HARDIMAN, O.; AL-CHALABI, A.; CHIO, A.; CORR, E. M.; LOGROSCINO, G.; ROBBERECHT, W.; SHAW, P. J.; SIMMONS, Z.; BERG, L. H. VAN DEN. Amyotrophic lateral sclerosis. Nature reviews. Disease primers, v. 3, p. 17071, 5 out. 2017.

LXI. HARVEY, C. et al. Rare and common genetic determinants of mitochondrial function determine severity but not risk of amyotrophic lateral sclerosis. Heliyon, v. 10, n. 3, p. e24975, fev. 2024.

LXII. HAYASHI, Y.; HOMMA, K.; ICHIJO, H. SOD1 in neurotoxicity and its controversial roles in SOD1 mutation-negative ALS. Advances in Biological Regulation, v. 60, p. 95–104, jan. 2016.

LXIII. HE, L.; LIANG, J.; CHEN, C.; CHEN, J.; SHEN, Y.; SUN, S.; LI, L. C9orf72 functions in the nucleus to regulate DNA damage repair. Cell Death & Differentiation, v. 30, n. 3, p. 716–730, 11 mar. 2023.

LXIV. HERRERO-MENDEZ, A.; ALMEIDA, A.; FERNÁNDEZ, E.; MAESTRE, C.; MONCADA, S.; BOLAÑOS, J. P. The bioenergetic and antioxidant status of neurons is controlled by continuous degradation of a key glycolytic enzyme by APC/C-Cdh1. Nature cell biology, v. 11, n. 6, p. 747–52, jun. 2009.

LXV. HICKMAN, S.; IZZY, S.; SEN, P.; MORSETT, L.; KHOURY, J. EL. Microglia in neurodegeneration. Nature Neuroscience, v. 21, n. 10, p. 1359–1369, 26 out. 2018.

LXVI. HONDA, N.; WATANABE, Y.; TOKUOKA, Y.; HANAJIMA, R. Roles of microglia/macrophage and antibody in cell sheet transplantation in the central nervous system. Stem Cell Research & Therapy, v. 13, n. 1, p. 470, 11 set. 2022.

LXVII. HOU, H.; WANG, L.; FU, T.; PAPASERGI, M.; YULE, D. I.; XIA, H. Magnesium Acts as a Second Messenger in the Regulation of NMDA Receptor-Mediated CREB Signaling in Neurons. Molecular Neurobiology, v. 57, n. 6, p. 2539–2550, 25 jun. 2020.

LXVIII. ILIEVA, H.; VULLAGANTI, M.; KWAN, J. Advances in molecular pathology, diagnosis, and treatment of amyotrophic lateral sclerosis. BMJ, p. e075037, 27 out. 2023.

LXIX. INOUE, K.; MORIMOTO, H.; OHGIDANI, M.; UEKI, T. Modulation of inflammatory responses by fractalkine signaling in microglia. PLOS ONE, v. 16, n. 5, p. e0252118, 21 maio 2021.

LXX. JHA, A. K. et al. Network Integration of Parallel Metabolic and Transcriptional Data Reveals Metabolic Modules that Regulate Macrophage Polarization. Immunity, v. 42, n. 3, p. 419–430, mar. 2015.

LXXI. JHANJI, R.; BEHL, T.; SEHGAL, A.; BUNGAU, S. Mitochondrial dysfunction and traffic jams in amyotrophic lateral sclerosis. Mitochondrion, v. 58, p. 102–110, maio 2021.

LXXII. JI, Y.; DUAN, W.; LIU, YALING; LIU, YAKUN; LIU, C.; LI, Y.; WEN, D.; LI, Z.; LI, C. IGF1 affects macrophage invasion and activation and TNF-α production in the sciatic nerves of female SOD1G93A mice. Neuroscience Letters, v. 668, p. 1–6, mar. 2018.

LXXIII. JORDAN, K.; MURPHY, J.; SINGH, A.; MITCHELL, C. S. Astrocyte-Mediated Neuromodulatory Regulation in Preclinical ALS: A Metadata Analysis. Frontiers in Cellular Neuroscience, v. 12, 17 dez. 2018.

LXXIV. KAMETANI, F.; OBI, T.; SHISHIDO, T.; AKATSU, H.; MURAYAMA, S.; SAITO, Y.; YOSHIDA, M.; HASEGAWA, M. Mass spectrometric analysis of accumulated TDP-43 in amyotrophic lateral sclerosis brains. Scientific Reports, v. 6, n. 1, p. 23281, 16 mar. 2016.

LXXV. KOBASHI, S.; TERASHIMA, T.; KATAGI, M.; URUSHITANI, M.; KOJIMA, H. Bone marrow-derived inducible microglia-like cells ameliorate motor function and survival in a mouse model of amyotrophic lateral sclerosis. Cytotherapy, v. 24, n. 8, p. 789–801, ago. 2022.

LXXVI. KUMAR, S.; MEHAN, S.; KHAN, Z.; GUPTA, G. DAS; NARULA, A. S. Guggulsterone Selectively Modulates STAT-3, mTOR, and PPAR-Gamma Signaling in a Methylmercury-Exposed Experimental Neurotoxicity: Evidence from CSF, Blood Plasma, and Brain Samples. Molecular Neurobiology, v. 61, n. 8, p. 5161–5193, 3 ago. 2024.

LXXVII. KWON, H. S.; KOH, S.-H. Neuroinflammation in neurodegenerative disorders: the roles of microglia and astrocytes. Translational Neurodegeneration, v. 9, n. 1, p. 42, 26 dez. 2020.

LXXVIII. LEE, Y. et al. Oligodendroglia metabolically support axons and contribute to neurodegeneration. Nature, v. 487, n. 7408, p. 443–448, 11 jul. 2012.

LXXIX. LEE, Y.-B. et al. Hexanucleotide Repeats in ALS/FTD Form Length-Dependent RNA Foci, Sequester RNA Binding Proteins, and Are Neurotoxic. Cell Reports, v. 5, n. 5, p. 1178–1186, dez. 2013.

LXXX. LE MASSON, G.; PRZEDBORSKI, S.; ABBOTT, L. F. A Computational Model of Motor Neuron Degeneration. Neuron, v. 83, n. 4, p. 975–988, ago. 2014.

LXXXI. LEWINSKI, F. VON; KELLER, B. U. Ca2+, mitochondria and selective motoneuron vulnerability: implications for ALS. Trends in Neurosciences, v. 28, n. 9, p. 494–500, set. 2005.

LXXXII. LEYTON-JAIMES, M. F.; KAHN, J.; ISRAELSON, A. Macrophage migration inhibitory factor: A multifaceted cytokine implicated in multiple neurological diseases. Experimental Neurology, v. 301, p. 83–91, mar. 2018.

LXXXIII. LI, Y. R.; KING, O. D.; SHORTER, J.; GITLER, A. D. Stress granules as crucibles of ALS pathogenesis. Journal of Cell Biology, v. 201, n. 3, p. 361–372, 29 abr. 2013.

LXXXIV. LIAO, B.; ZHAO, W.; BEERS, D. R.; HENKEL, J. S.; APPEL, S. H. Transformation from a neuroprotective to a neurotoxic microglial phenotype in a mouse model of ALS. Experimental Neurology, v. 237, n. 1, p. 147–152, set. 2012.

LXXXV. LIDDELOW, S. A. et al. Neurotoxic reactive astrocytes are induced by activated microglia. Nature, v. 541, n. 7638, p. 481–487, 18 jan. 2017.

LXXXVI. LYU, J.; JIANG, X.; LEAK, R. K.; SHI, Y.; HU, X.; CHEN, J. Microglial Responses to Brain Injury and Disease: Functional Diversity and New Opportunities. Translational Stroke Research, v. 12, n. 3, p. 474–495, 31 jun. 2021.

LXXXVII. MACLEAN, M.; JURANEK, J.; CUDDAPAH, S.; LÓPEZ-DÍEZ, R.; RUIZ, H. H.; HU, J.; FRYE, L.; LI, H.; GUGGER, P. F.; SCHMIDT, A. M. Microglia RAGE exacerbates the progression of neurodegeneration within the SOD1G93A murine model of amyotrophic lateral sclerosis in a sex-dependent manner. Journal of Neuroinflammation, v. 18, n. 1, p. 139, 15 dez. 2021.

LXXXVIII. MAGISTRETTI, P. J.; ALLAMAN, I. A cellular perspective on brain energy metabolism and functional imaging. Neuron, v. 86, n. 4, p. 883–901, 20 maio 2015.

LXXXIX. MANN, J. R. et al. Loss of function of the ALS-associated NEK1 kinase disrupts microtubule homeostasis and nuclear import. Science Advances, v. 9, n. 33, 18 ago. 2023.

XC. MANTOVANI, S.; GARBELLI, S.; PASINI, A.; ALIMONTI, D.; PEROTTI, C.; MELAZZINI, M.; BENDOTTI, C.; MORA, G. Immune system alterations in sporadic amyotrophic lateral sclerosis patients suggest an ongoing neuroinflammatory process. Journal of Neuroimmunology, v. 210, n. 1–2, p. 73–79, maio 2009.

XCI. MARCHI, F. DE; TONDO, G.; CORRADO, L.; MENEGON, F.; APRILE, D.; ANSELMI, M.; D’ALFONSO, S.; COMI, C.; MAZZINI, L. Neuroinflammatory Pathways in the ALS-FTD Continuum: A Focus on Genetic Variants. Genes, v. 14, n. 8, 21 ago. 2023.

XCII. MARTINELLI, I.; MANDRIOLI, J.; GHEZZI, A.; ZUCCHI, E.; GIANFERRARI, G.; SIMONINI, C.; CAVALLIERI, F.; VALZANIA, F. Multifaceted superoxide dismutase 1 expression in amyotrophic lateral sclerosis patients: a rare occurrence? Neural regeneration research, v. 20, n. 1, p. 130–138, 1 jan. 2025.

XCIII. MARTINEZ-MERINO, L.; IRIDOY, M.; GALBETE, A.; ROLDÁN, M.; RIVERO, A.; ACHA, B.; IRÚN, P.; CANOSA, C.; POCOVÍ, M.; MENDIOROZ, M.; JERICÓ, I. Evaluation of Chitotriosidase and CC-Chemokine Ligand 18 as Biomarkers of Microglia Activation in Amyotrophic Lateral Sclerosis. Neurodegenerative Diseases, v. 18, n. 4, p. 208–215, 2018.

XCIV. MASTRANGELO, A. et al. Amyloid-Beta Co-Pathology Is a Major Determinant of the Elevated Plasma GFAP Values in Amyotrophic Lateral Sclerosis. International journal of molecular sciences, v. 24, n. 18, 12 set. 2023.

XCV. MATHIS, S.; GOIZET, C.; SOULAGES, A.; VALLAT, J.-M.; MASSON, G. LE. Genetics of amyotrophic lateral sclerosis: A review. Journal of the neurological sciences, v. 399, p. 217–226, 15 abr. 2019.

XCVI. MAYL, K.; SREEDHARAN, J. Blowing Hot and Cold in ALS: The Duality of TBK1. Neuron, v. 106, n. 5, p. 705–707, 3 jun. 2020.

XCVII. MEYER, T. [Amyotrophic lateral sclerosis (ALS) - diagnosis, course of disease and treatment options]. Deutsche medizinische Wochenschrift (1946), v. 146, n. 24–25, p. 1613–1618, dez. 2021.

XCVIII. MIAO, J.; CHEN, L.; PAN, X.; LI, L.; ZHAO, B.; LAN, J. Microglial Metabolic Reprogramming: Emerging Insights and Therapeutic Strategies in Neurodegenerative Diseases. Cellular and Molecular Neurobiology, v. 43, n. 7, p. 3191–3210, 21 out. 2023.

XCIX. MINJ, E.; UPADHAYAY, S.; MEHAN, S. Nrf2/HO-1 Signaling Activator Acetyl-11-keto-beta Boswellic Acid (AKBA)-Mediated Neuroprotection in Methyl Mercury-Induced Experimental Model of ALS. Neurochemical Research, v. 46, n. 11, p. 2867–2884, 1 nov. 2021.

C. MIQUEL, E.; CASSINA, A.; MARTÍNEZ-PALMA, L.; BOLATTO, C.; TRÍAS, E.; GANDELMAN, M.; RADI, R.; BARBEITO, L.; CASSINA, P. Modulation of Astrocytic Mitochondrial Function by Dichloroacetate Improves Survival and Motor Performance in Inherited Amyotrophic Lateral Sclerosis. PLoS ONE, v. 7, n. 4, p. e34776, 3 abr. 2012.

CI. NAGAI, M.; RE, D. B.; NAGATA, T.; CHALAZONITIS, A.; JESSELL, T. M.; WICHTERLE, H.; PRZEDBORSKI, S. Astrocytes expressing ALS-linked mutated SOD1 release factors selectively toxic to motor neurons. Nature Neuroscience, v. 10, n. 5, p. 615–622, 15 maio 2007.

CII. NEEL, D. V. et al. Gasdermin-E mediates mitochondrial damage in axons and neurodegeneration. Neuron, v. 111, n. 8, p. 1222- 1240.e9, abr. 2023.

CIII. NGO, S. T.; STEYN, F. J. The interplay between metabolic homeostasis and neurodegeneration: insights into the neurometabolic nature of amyotrophic lateral sclerosis. Cell Regeneration, v. 4, n. 1, p. 4:5, 2015.

CIV. NGUYEN, D. K. H.; THOMBRE, R.; WANG, J. Autophagy as a common pathway in amyotrophic lateral sclerosis. Neuroscience letters, v. 697, p. 34–48, 1 abr. 2019.

CV. NORDEN, D. M.; FENN, A. M.; DUGAN, A.; GODBOUT, J. P. TGFβ produced by IL‐10 redirected astrocytes attenuates microglial activation. Glia, v. 62, n. 6, p. 881–895, 25 jun. 2014.

CVI. O’NEILL, L. A. J.; PEARCE, E. J. Immunometabolism governs dendritic cell and macrophage function. Journal of Experimental Medicine, v. 213, n. 1, p. 15–23, 11 jan. 2016.

CVII. PAN, D.; ACEVEDO-CINTRÓN, J. A.; SAYANAGI, J.; SNYDER-WARWICK, A. K.; MACKINNON, S. E.; WOOD, M. D. The CCL2/CCR2 axis is critical to recruiting macrophages into acellular nerve allograft bridging a nerve gap to promote angiogenesis and regeneration. Experimental Neurology, v. 331, p. 113363, set. 2020.

CVIII. PAREKH, B. A(a)LS: Ammonia-induced amyotrophic lateral sclerosis. F1000Research, v. 4, p. 119, 14 maio 2015.

CIX. PARK, H.; KAM, T.-I.; DAWSON, T. M.; DAWSON, V. L. Poly (ADP-ribose) (PAR)-dependent cell death in neurodegenerative diseases. Em: [s.l: s.n.]. p. 1–29.

CX. PETROZZIELLO, T. et al. Targeting Tau Mitigates Mitochondrial Fragmentation and Oxidative Stress in Amyotrophic Lateral Sclerosis. Molecular Neurobiology, v. 59, n. 1, p. 683–702, 10 jan. 2022.

CXI. PHILIPS, T.; ROTHSTEIN, J. D. Oligodendroglia: metabolic supporters of neurons. The Journal of clinical investigation, v. 127, n. 9, p. 3271–3280, 1 set. 2017.

CXII. PIERRE, K.; PELLERIN, L.; DEBERNARDI, R.; RIEDERER, B. M.; MAGISTRETTI, P. J. Cell-specific localization of monocarboxylate transporters, MCT1 and MCT2, in the adult mouse brain revealed by double immunohistochemical labeling and confocal microscopy. Neuroscience, v. 100, n. 3, p. 617–27, 2000.

CXIII. PLOWMAN, E. K.; TABOR, L. C.; WYMER, J.; PATTEE, G. The evaluation of bulbar dysfunction in amyotrophic lateral sclerosis: survey of clinical practice patterns in the United States. Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration, v. 18, n. 5–6, p. 351–357, 3 jul. 2017.

CXIV. RAMÍREZ-JARQUÍN, U. N.; TAPIA, R. Excitatory and Inhibitory Neuronal Circuits in the Spinal Cord and Their Role in the Control of Motor Neuron Function and Degeneration. ACS Chemical Neuroscience, v. 9, n. 2, p. 211–216, 21 fev. 2018.

CXV. RAMYA, V.; SARKAR, N.; BHAGAT, S.; PRADHAN, R. K.; VARGHESE, A. M.; NALINI, A.; SATHYAPRABHA, T. N.; RAJU, T. R.; VIJAYALAKSHMI, K. Oligodendroglia Confer Neuroprotection to NSC-34 Motor Neuronal Cells Against the Toxic Insults of Cerebrospinal Fluid from Sporadic Amyotrophic Lateral Sclerosis Patients. Molecular Neurobiology, v. 60, n. 9, p. 4855–4871, 15 set. 2023.

CXVI. RENAUD, L.; PICHER-MARTEL, V.; CODRON, P.; JULIEN, J.-P. Key role of UBQLN2 in pathogenesis of amyotrophic lateral sclerosis and frontotemporal dementia. Acta neuropathologica communications, v. 7, n. 1, p. 103, 18 jul. 2019.

CXVII. RIOS, R.; JABLONKA-SHARIFF, A.; BROBERG, C.; SNYDER-WARWICK, A. K. Macrophage roles in peripheral nervous system injury and pathology: Allies in neuromuscular junction recovery. Molecular and Cellular Neuroscience, v. 111, p. 103590, mar. 2021.

CXVIII. RUSINA, R.; VANDENBERGHE, R.; BRUFFAERTS, R. Cognitive and Behavioral Manifestations in ALS: Beyond Motor System Involvement. Diagnostics, v. 11, n. 4, p. 624, 30 mar. 2021.

CXIX. SACCON, R. A.; BUNTON-STASYSHYN, R. K. A.; FISHER, E. M. C.; FRATTA, P. Is SOD1 loss of function involved in amyotrophic lateral sclerosis? Brain, v. 136, n. 8, p. 2342–2358, ago. 2013.

CXX. SAIJO, K.; CROTTI, A.; GLASS, C. K. Regulation of microglia activation and deactivation by nuclear receptors. Glia, v. 61, n. 1, p. 104–111, 17 jan. 2013.

CXXI. SAINT-POL, J.; GOSSELET, F.; DUBAN-DEWEER, S.; POTTIEZ, G.; KARAMANOS, Y. Targeting and Crossing the Blood-Brain Barrier with Extracellular Vesicles. Cells, v. 9, n. 4, p. 851, 1 abr. 2020.

CXXII. SCEKIC-ZAHIROVIC, J.; FISCHER, M.; STUART-LOPEZ, G.; BURG, T.; GILET, J.; DIRRIG-GROSCH, S.; MARQUES, C.; BIRLING, M.-C.; KESSLER, P.; ROUAUX, C. Evidence that corticofugal propagation of ALS pathology is not mediated by prion-like mechanism. Progress in neurobiology, v. 200, p. 101972, maio 2021.

CXXIII. SCHEIBLICH, H.; TROMBLY, M.; RAMIREZ, A.; HENEKA, M. T. Neuroimmune Connections in Aging and Neurodegenerative Diseases. Trends in immunology, v. 41, n. 4, p. 300–312, abr. 2020.

CXXIV. SELLIER, C.; CORCIA, P.; VOURC’H, P.; DUPUIS, L. C9ORF72 hexanucleotide repeat expansion: From ALS and FTD to a broader pathogenic role? Revue neurologique, v. 180, n. 5, p. 417–428, maio 2024.

CXXV. SHARKEY, L. M. et al. Mutant UBQLN2 promotes toxicity by modulating intrinsic self-assembly. Proceedings of the National Academy of Sciences, v. 115, n. 44, 30 out. 2018.

CXXVI. SHEN, Y.; KAPFHAMER, D.; MINNELLA, A. M.; KIM, J.-E.; WON, S. J.; CHEN, Y.; HUANG, Y.; LOW, L. H.; MASSA, S. M.; SWANSON, R. A. Bioenergetic state regulates innate inflammatory responses through the transcriptional co-repressor CtBP. Nature Communications, v. 8, n. 1, p. 624, 22 set. 2017.

CXXVII. SHI, Y.; ZHU, R. Analysis of damage-associated molecular patterns in amyotrophic lateral sclerosis based on ScRNA-seq and bulk RNA-seq data. Frontiers in Neuroscience, v. 17, 24 out. 2023.

CXXVIII. SONG, J. Molecular Mechanisms of Phase Separation and Amyloidosis of ALS/FTD-linked FUS and TDP-43. Aging and disease, v. 15, n. 5, p. 2084–2112, 1 out. 2024.

CXXIX. STEINACKER, P. et al. Chitotriosidase (CHIT1) is increased in microglia and macrophages in spinal cord of amyotrophic lateral sclerosis and cerebrospinal fluid levels correlate with disease severity and progression. Journal of Neurology, Neurosurgery & Psychiatry, v. 89, n. 3, p. 239–247, mar. 2018.

CXXX. STRAUB, I. R.; WERAARPACHAI, W.; SHOUBRIDGE, E. A. Multi-OMICS study of a CHCHD10 variant causing ALS demonstrates metabolic rewiring and activation of endoplasmic reticulum and mitochondrial unfolded protein responses. Human Molecular Genetics, v. 30, n. 8, p. 687–705, 17 maio 2021.

CXXXI. SU, Z. et al. Discovery of a Biomarker and Lead Small Molecules to Target r(GGGGCC)-Associated Defects in c9FTD/ALS. Neuron, v. 83, n. 5, p. 1043–1050, set. 2014.

CXXXII. SUNICO, C. R.; DOMÍNGUEZ, G.; GARCÍA‐VERDUGO, J. M.; OSTA, R.; MONTERO, F.; MORENO‐LÓPEZ, B. Reduction in the Motoneuron Inhibitory/Excitatory Synaptic Ratio in an Early‐Symptomatic Mouse Model of Amyotrophic Lateral Sclerosis. Brain Pathology, v. 21, n. 1, p. 1–15, 3 jan. 2011.

CXXXIII. SZELECHOWSKI, M. et al. Metabolic Reprogramming in Amyotrophic Lateral Sclerosis. Scientific Reports, v. 8, n. 1, p. 3953, 2 mar. 2018.

CXXXIV. TAHA, D. M. et al. Astrocytes display cell autonomous and diverse early reactive states in familial amyotrophic lateral sclerosis. Brain, v. 145, n. 2, p. 481–489, 18 abr. 2022.

CXXXV. TALBOTT, E. O.; MALEK, A. M.; LACOMIS, D. The epidemiology of amyotrophic lateral sclerosis. Em: [s.l: s.n.]. p. 225–238.

CXXXVI. TEFERA, T. W.; BORGES, K. Neuronal glucose metabolism is impaired while astrocytic TCA cycling is unaffected at symptomatic stages in the hSOD1 G93A mouse model of amyotrophic lateral sclerosis. Journal of Cerebral Blood Flow & Metabolism, v. 39, n. 9, p. 1710–1724, 19 set. 2019.

CXXXVII. TOGAWA, N.; AYAKI, T.; YOSHII, D.; MAKI, T.; SAWAMOTO, N.; TAKAHASHI, R. TMEM119-positive microglia were increased in the brains of patients with amyotrophic lateral sclerosis. Neuroscience Letters, v. 833, p. 137829, jun. 2024.

CXXXVIII. TORTELLI, R.; ZECCA, C.; PICCININNI, M.; BENMAHAMED, S.; DELL’ABATE, M. T.; BARULLI, M. R.; CAPOZZO, R.; BATTISTA, P.; LOGROSCINO, G. Plasma Inflammatory Cytokines Are Elevated in ALS. Frontiers in Neurology, v. 11, 13 nov. 2020.

CXXXIX. TRIAS, E.; KOVACS, M.; KING, P. H.; SI, Y.; KWON, Y.; VARELA, V.; IBARBURU, S.; MOURA, I. C.; HERMINE, O.; BECKMAN, J. S.; BARBEITO, L. Schwann cells orchestrate peripheral nerve inflammation through the expression of CSF1, IL‐34, and SCF in amyotrophic lateral sclerosis. Glia, v. 68, n. 6, p. 1165–1181, 20 jun. 2020.

CXL. TRIST, B. G. et al. Altered SOD1 maturation and post-translational modification in amyotrophic lateral sclerosis spinal cord. Brain, v. 145, n. 9, p. 3108–3130, 14 set. 2022.

CXLI. TSEKREKOU, M.; GIANNAKOU, M.; PAPANIKOLOPOULOU, K.; SKRETAS, G. Protein aggregation and therapeutic strategies in SOD1- and TDP-43- linked ALS. Frontiers in molecular biosciences, v. 11, p. 1383453, 2024.

CXLII. TZIORTZOUDA, P. et al. PP2A and GSK3 act as modifiers of FUS-ALS by modulating mitochondrial transport. Acta Neuropathologica, v. 147, n. 1, p. 41, 16 jun. 2024.

CXLIII. VAHSEN, B. F.; GRAY, E.; THOMPSON, A. G.; ANSORGE, O.; ANTHONY, D. C.; COWLEY, S. A.; TALBOT, K.; TURNER, M. R. Non-neuronal cells in amyotrophic lateral sclerosis — from pathogenesis to biomarkers. Nature Reviews Neurology, v. 17, n. 6, p. 333–348, 29 jun. 2021.

CXLIV. VANCE, C. et al. Mutations in FUS, an RNA processing protein, cause familial amyotrophic lateral sclerosis type 6. Science (New York, N.Y.), v. 323, n. 5918, p. 1208–1211, 27 fev. 2009.

CXLV. VANDOORNE, T.; BOCK, K. DE; BOSCH, L. VAN DEN. Energy metabolism in ALS: an underappreciated opportunity? Acta Neuropathologica, v. 135, n. 4, p. 489–509, 16 abr. 2018.

CXLVI. VELDINK, J. H. ALS genetic epidemiology “How simplex is the genetic epidemiology of ALS?”. Journal of neurology, neurosurgery, and psychiatry, v. 88, n. 7, p. 537, jul. 2017.

CXLVII. WANG, M.-J.; KANG, LU; WANG, Y.-Z.; YANG, B.-R.; ZHANG, C.; LU, Y.-F.; KANG, LIANG. Microglia in motor neuron disease: Signaling evidence from last 10 years. Developmental neurobiology, v. 82, n. 7–8, p. 625–638, out. 2022.

CXLVIII. WANG, Q.; LU, M.; ZHU, X.; GU, X.; ZHANG, T.; XIA, C.; YANG, L.; XU, Y.; ZHOU, M. The role of microglia immunometabolism in neurodegeneration: Focus on molecular determinants and metabolic intermediates of metabolic reprogramming. Biomedicine & Pharmacotherapy, v. 153, p. 113412, set. 2022.

CXLIX. WANG, S.; SUN, S. Translation dysregulation in neurodegenerative diseases: a focus on ALS. Molecular neurodegeneration, v. 18, n. 1, p. 58, 25 ago. 2023.

CL. WANG, T.; LIU, H.; ITOH, K.; OH, S.; ZHAO, L.; MURATA, D.; SESAKI, H.; HARTUNG, T.; NA, C. H.; WANG, J. C9orf72 regulates energy homeostasis by stabilizing mitochondrial complex I assembly. Cell Metabolism, v. 33, n. 3, p. 531- 546.e9, mar. 2021.

CLI. WEISHAUPT, J. H.; HYMAN, T.; DIKIC, I. Common Molecular Pathways in Amyotrophic Lateral Sclerosis and Frontotemporal Dementia. Trends in Molecular Medicine, v. 22, n. 9, p. 769–783, set. 2016.

CLII. WHITE, M. A. et al. TDP-43 gains function due to perturbed autoregulation in a Tardbp knock-in mouse model of ALS-FTD. Nature Neuroscience, v. 21, n. 4, p. 552–563, 19 abr. 2018.

CLIII. XU, Z.; XU, R. Current potential diagnostic biomarkers of amyotrophic lateral sclerosis. Reviews in the Neurosciences, 9 jul. 2024.

CLIV. YAMAMURO-TANABE, A.; KOSUGE, Y.; ISHIMARU, Y.; YOSHIOKA, Y. Schwann cell derived-peroxiredoxin protects motor neurons against hydrogen peroxide-induced cell death in mouse motor neuron cell line NSC-34. Journal of Pharmacological Sciences, v. 153, n. 2, p. 73–83, out. 2023.

CLV. YANG, L.; GAL, J.; CHEN, J.; ZHU, H. Self-assembled FUS binds active chromatin and regulates gene transcription. Proceedings of the National Academy of Sciences, v. 111, n. 50, p. 17809–17814, 16 dez. 2014.

CLVI. YI, M.-H.; ZHANG, E.; KANG, J. W.; SHIN, Y. N.; BYUN, J. Y.; OH, S.-H.; SEO, J. H.; LEE, Y. H.; KIM, D. W. Expression of CD200 in alternative activation of microglia following an excitotoxic lesion in the mouse hippocampus. Brain Research, v. 1481, p. 90–96, out. 2012.

CLVII. YU, Y.; JIANG, Y.; GLANDORFF, C.; SUN, M. Exploring the mystery of tumor metabolism: Warburg effect and mitochondrial metabolism fighting side by side. Cellular signalling, v. 120, p. 111239, ago. 2024.

CLVIII. YUAN, S.; ZHANG, Z.-W.; LI, Z.-L. Cell Death-Autophagy Loop and Glutamate-Glutamine Cycle in Amyotrophic Lateral Sclerosis. Frontiers in Molecular Neuroscience, v. 10, 21 jul. 2017.

CLIX. YUNUSOVA, Y.; PLOWMAN, E. K.; GREEN, J. R.; BARNETT, C.; BEDE, P. Clinical Measures of Bulbar Dysfunction in ALS. Frontiers in Neurology, v. 10, 19 fev. 2019.

CLX. YUSUF, I. O.; QIAO, T.; PARSI, S.; TILVAWALA, R.; THOMPSON, P. R.; XU, Z. Protein citrullination marks myelin protein aggregation and disease progression in mouse ALS models. Acta Neuropathologica Communications, v. 10, n. 1, p. 135, 8 set. 2022.

CLXI. ZAMIRI, K.; KESARI, S.; PAUL, K.; HWANG, S. H.; HAMMOCK, B.; KACZOR‐URBANOWICZ, K. E.; URBANOWICZ, A.; GAO, L.; WHITELEGGE, J.; FIALA, M. Therapy of autoimmune inflammation in sporadic amyotrophic lateral sclerosis: Dimethyl fumarate and H‐151 downregulate inflammatory cytokines in the cGAS‐STING pathway. The FASEB Journal, v. 37, n. 8, 12 ago. 2023.

CLXII. ZHU, Y. et al. Disruption of MAM integrity in mutant FUS oligodendroglial progenitors from hiPSCs. Acta Neuropathologica, v. 147, n. 1, p. 6, 3 jun. 2024.

CLXIII. ZIELIŃSKA, M.; ALBRECHT, J.; POPEK, M. Dysregulation of Astrocytic Glutamine Transport in Acute Hyperammonemic Brain Edema. Frontiers in Neuroscience, v. 16, 6 jun. 2022.

CLXIV. ZÜNDORF, G.; REISER, G. Calcium Dysregulation and Homeostasis of Neural Calcium in the Molecular Mechanisms of Neurodegenerative Diseases Provide Multiple Targets for Neuroprotection. Antioxidants & Redox Signaling, v. 14, n. 7, p. 1275–1288, abr. 2011.