Determination of Conventional Hydric Balance, Bioimpedance Analysis, and Portable Ultrasound, and Their Agreement Level with Postoperative Complications in Oncological Patients Undergoing Abdominal Surgery at the General Hospital Zone 3 in Aguascalientes

Main Article Content

Rocha Cabrera Cecilia Estefanía
Bizueto Monroy Jose Luis
González Espinosa Ivonne
Macias Rodríguez Jose Isaac
Márquez Lara Massiel
Godinez Palacios Edgar Jafeth

Abstract

Background: Cancer is a significant public health issue, leading to substantial losses in human life and economic resources. The immediate adverse effects of surgery and cancer treatment—such as pain, fatigue, fluid retention, and weakness—can be alleviated with appropriate interventions. Increasing evidence suggests that a patient’s physiological reserve capacity plays a crucial role in reducing perioperative complications. Among oncology patients, the overall rate of postoperative complications is high. In cases where extensive fluid therapy is administered, 41.3% of patients experience severe complications (Clavien-Dindo ≥ III).


Objective: To identify postoperative complications in oncology patients undergoing abdominal surgery and to correlate these complications with the level of edema assessed by conventional fluid balance, bioimpedance analysis, and portable ultrasound at General Hospital Zone 3 in Aguascalientes.


Materials and Methods: A prospective, comparative, analytical clinical trial was conducted in the General Surgery Department of the General Hospital of Zone 3, part of the Mexican Social Security Institute (IMSS), Aguascalientes.


Results: Based on sample size calculations, 28 patients were included. When analyzing the concordance between conventional fluid balance and portable ultrasound at 24, 48, and 72 hours, insignificant correlation was observed among the three methods. Similarly, the bioimpedance analyzer and portable ultrasound also showed insignificant agreement at these same intervals. Conclusions: This study employed three diagnostic methods—conventional fluid balance, bioimpedance analysis, and portable ultrasound. Our findings indicate no significant concordance among the three methods in determining postoperative complications in oncology patients undergoing abdominal surgery. Furthermore, no correlation was observed between positive fluid balance and the development of perioperative complications.

Article Details

How to Cite
Rocha Cabrera Cecilia Estefanía, Bizueto Monroy Jose Luis, González Espinosa Ivonne, Macias Rodríguez Jose Isaac, Márquez Lara Massiel, & Godinez Palacios Edgar Jafeth. (2024). Determination of Conventional Hydric Balance, Bioimpedance Analysis, and Portable Ultrasound, and Their Agreement Level with Postoperative Complications in Oncological Patients Undergoing Abdominal Surgery at the General Hospital Zone 3 in Aguascalientes. International Journal of Medical Science and Clinical Research Studies, 4(11), 2056–2066. https://doi.org/10.47191/ijmscrs/v4-i11-19
Section
Articles

References

I. Kubo Y, Tanaka K, Yamasaki M, Yamashita K, Makino T, Saito T, et al. The impact of perioperative fluid balance on postoperative complications after esophagectomy for esophageal cancer. J Clin Med [Internet]. 2022;11(11):3219. Disponible en: http://dx.doi.org/10.3390/jcm11113219.

II. Pisarska-Adamczyk M, Torbicz G, Gajewska N, Małczak P, Major P, Pędziwiatr M, et al. The impact of perioperative fluid therapy on the short-term outcomes after laparoscopic colorectal cancer surgery with ERAS protocol: a prospective observational study. Sci Rep [Internet]. 2023;13(1). Disponible en: http://dx.doi.org/10.1038/s41598-023-49704-y.

III. Peltoniemi P, Pere P, Mustonen H, Seppänen H. Optimal perioperative fluid therapy associates with fewer complications after pancreaticoduodenectomy. J Gastrointest Surg [Internet]. 2023;27(1):67–77. Disponible en: http://dx.doi.org/10.1007/s11605-022-05453-3.

IV. Ciumanghel A-I, Grigoras I, Siriopol D, Blaj M, Rusu D-M, Grigorasi GR, et al. Bio-electrical impedance analysis for perioperative fluid evaluation in open major abdominal surgery. J Clin Monit Comput [Internet]. 2020;34(3):421–32. Disponible en: http://dx.doi.org/10.1007/s10877-019-00334-8.

V. Dzierżek P, Kurnol K, Hap W, Frejlich E, Diakun A, Karwowski A, et al. Assessment of body composition measure of bioelectrical impedance in patients operated for pancreatic, gastric and colorectal cancer. Pol Przegl Chir [Internet]. 2020;92(1):1–5. Disponible en: http://dx.doi.org/10.5604/01.3001.0013.7951.

VI. Cihoric M, Kehlet H, Højlund J, Lauritsen ML, Kanstrup K, Foss NB. Bioimpedance spectroscopy fluid analysis in acute high-risk abdominal surgery, a prospective clinician-blinded observational feasibility study. J Clin Monit Comput [Internet]. 2023;37(2):619–27. Disponible en: http://dx.doi.org/10.1007/s10877-022-00934-x.

VII. Branco MG, Mateus C, Capelas ML, Pimenta N, Santos T, Mäkitie A, et al. Bioelectrical Impedance Analysis (BIA) for the assessment of body composition in oncology: A scoping review. Nutrients [Internet]. 2023;15(22):4792. Disponible en: http://dx.doi.org/10.3390/nu15224792.

VIII. Nagae M, Umegaki H, Yoshiko A, Fujita K. Muscle ultrasound and its application to point-of-care ultrasonography: a narrative review. Ann Med [Internet]. 2023;55(1):190–7. Disponible en: http://dx.doi.org/10.1080/07853890.2022.2157871.

IX. Pragasam S, Kumari R, Munisamy M, Mohan Thappa D. Utility of high‐frequency ultrasound in assessing cutaneous edema in venous ulcer patients. Skin Res Technol [Internet]. 2021;27(5):904–8. Disponible en: http://dx.doi.org/10.1111/srt.13040.

X. Oohashi F, Suto T, Matsui H, Shirabe K, Uchida Y. Assessment of the skin tissue structure using an ultrasonic diagnostic imaging device in patients undergoing open surgery. Skin Res Technol [Internet]. 2019;25(6):821–9. Disponible en: http://dx.doi.org/10.1111/srt.12727.

XI. Inzunza-Cervantes G, Duarte-Quintero JL, López-Chiquete MO, Blanco-Olivas JA, Jacobo-Ochoa S. Fluidoterapia intravenosa en el paciente clínico hospitalizado. Med Int Méx 2022; 38 (6): 1233-1243. Disponible en:

https://doi.org/10.24245/mim.v38i6.5112.

XII. Malbrain MLNG, Langer T, Annane D, Gattinoni L, Elbers P, Hahn RG, et al. Intravenous fluid therapy in the perioperative and critical care setting: Executive summary of the International Fluid Academy (IFA). Ann Intensive Care [Internet]. 2020;10(1). Disponible en:

http://dx.doi.org/10.1186/s13613-020-00679-3.

XIII. Kan CFK, Skaggs JD. Current commonly used dynamic parameters and monitoring systems for perioperative goal-directed fluid therapy: A review. Yale J Biol Med [Internet]. 2023;96(1):107–23. Disponible en: http://dx.doi.org/10.59249/joap6662.

XIV. Goss JA, Greene AK. Sensitivity and specificity of the Stemmer sign for lymphedema: A clinical lymphoscintigraphic study. Plast Reconstr Surg Glob Open [Internet]. 2019;7(6):e2295. Disponible en: http://dx.doi.org/10.1097/gox.0000000000002295.

XV. Sousa ÁFL de, Bim LL, Hermann PR de S, Fronteira I, Andrade D de. Late postoperative complications in surgical patients: an integrative review. Rev Bras Enferm [Internet]. 2020;73(5). Disponible en: http://dx.doi.org/10.1590/0034-7167-2019-0290.

XVI. Koratala A, Ronco C, Kazory A. Diagnosis of fluid overload: From conventional to contemporary concepts. Cardiorenal Med [Internet]. 2022;12(4):141–54. Disponible en:

http://dx.doi.org/10.1159/000526902.

XVII. Diller ML, Master VA. Integrative surgical oncology: A model of acute integrative oncology. Cancer [Internet]. 2021;127(21):3929–38. Disponible en:

http://dx.doi.org/10.1002/cncr.33688.

XVIII. Ng PY, Bing EG, Cuevas A, Aggarwal A, Chi B, Sundar S, et al. Virtual reality and surgical oncology. Ecancermedicalscience [Internet]. 2023;17. Disponible en:

http://dx.doi.org/10.3332/ecancer.2023.1525.

XIX. Sandini M, Pinotti E, Persico I, Picone D, Bellelli G, Gianotti L. Systematic review and meta-analysis of frailty as a predictor of morbidity and mortality after major abdominal surgery: Frailty metrics in major abdominal surgery. BJS Open [Internet]. 2017;1(5):128–37. Disponible en:

http://dx.doi.org/10.1002/bjs5.22.

XX. Villablanca N, Almeida C, Stamm T, Valls N. Importancia de la valoración perioperatoria en el paciente oncológico. Rev Chil Anest [Internet]. 2022;51(3). Disponible en:

http://dx.doi.org/10.25237/revchilanestv5116031404.

XXI. Ruiz Ortega AA, Jaramillo AE, Pizaña Dávila A, Gasca Aldama JC, Alva Arroyo NV, Zapata Chan CG. Asociación del signo de Godet con la medición por ultrasonido del edema periférico y balance de líquidos. El resurgir de la clínica. Medicina Crítica [Internet]. 2022;36(8):500–6. Disponible en: http://dx.doi.org/10.35366/109170.

XXII. Song X, Ma Y, Shi H, Liu Y. Application of Clavien–Dindo classfication-grade in evaluating overall efficacy of laparoscopic pancreaticoduodenectomy. Front Surg [Internet]. 2023;10. Disponible en:

http://dx.doi.org/10.3389/fsurg.2023.1043329.

XXIII. Miyamoto S, Nakao J, Higashino T, Yoshimoto S, Hayashi R, Sakuraba M. Clavien–Dindo classification for grading complications after total pharyngolaryngectomy and free jejunum transfer. PLoS One [Internet]. 2019;14(9):e0222570. Disponible en:

http://dx.doi.org/10.1371/journal.pone.0222570.

XXIV. Zhang W, Gu Y, Zhao Y, Lian J, Zeng Q, Wang X, et al. Focused liquid ultrasonography in dropsy protocol for quantitative assessment of subcutaneous edema. Crit Care [Internet]. 2023;27(1):114. Disponible en:

http://dx.doi.org/10.1186/s13054-023-04403-y.

XXV. Brooks, S. (2015, noviembre 5). Calculators. Select Statistical Consultants. https://select-statistics.co.uk/calculators/